
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A2: Simple DirectMedia Layer (SDL)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de aula
‣ Configurando CLion + SDL

‣ Introdução a SDL

‣ SDL vs. Engines

‣ Subsistemas SDL

‣ Criando Janelas e Renderizadores

‣ Loop Principal

‣ Primitivas geométricas

‣ Eventos de entrada

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

CLion e CMake
Antes de começarmos a falar de SDL, é importante relembrar que usaremos a IDE CLion para
programar os jogos durante a disciplina. Além disso, usarmos CMake para compilação:

3

Configura o padrão C++

Configura o nome do projeto

Procura pelos arquivos de cabeçalho .h
da SDL 2.32.2 especificamente

Liga a biblioteca SDL2 no executável

Dependendo da plataforma, talvez você tenha
dificuldades em fazer com que a IDE encontre
os arquivos de cabeçalho

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

SDL - Simple DirectMedia Layer
Simple DirectMedia Layer (SDL) é uma biblioteca de desenvolvimento de jogos projetada para
fornecer acesso de baixo nível a recursos multimídia (áudio, vídeo, I/O, …) do computador:

‣ Multiplataforma:

‣ Windows, Mac OS X, Linux, iOS, Android, ..

‣ Utilizada em muitos jogos e engines:

‣ Valve’s Source Engine

‣ Half-Life 2, Portal, Counter-Strike, …

‣ Faster Than Light, Darf Fortress , VVVVVV, …

4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

SDL Vs. Game Engines

Por que usar SDL?

‣ Compreensão mais profunda: entender os fundamentos de desenvolvimento de jogos

‣ Flexibilidade: criar estruturas personalizadas sem restrições de framework

‣ Performance: controlar o uso de recursos com mais precisão

5

SDL Game Engines (Unity, Unreal, Godot)

Biblioteca de baixo nível Frameworks completos de alto nível

Controle direto sobre o hardware Abstrações prontas (física, renderização avançada)

Desempenho otimizado Facilidade e rapidez de desenolvimento

Curva de aprendizado média Interface visual e ferramentas integradas

Menos recursos prontos Ecossistema de assets e plugins

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

A biblioteca padrão SDL2 é organizada em vários subsistemas, que oferecem funções
específicas:

‣ Video — Desenho acelerado por hardware gráfico

‣ Audio — Reprodução e captura de sons

‣ Timer — Gerenciamento de tempo com alta precisão

‣ Events — Processar eventos de entrada

‣ File I/O — Manipulação de arquivos independentes de plataforma

‣ Threading — Gerenciamento de threads

Extensões da SDL2: SDL_image, SDL_mixer, SDL_ttf, SDL_net, SDL_gfx

Subsistemas SDL2

6

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Inicializando subsistemas SDL2
A primeira etapa de todo programa em SDL2 é inicializar os susbstimas desejados.

7

// A biblioteda SDL.h contém todos os subsistemas básicos da SDL.
// Para incluir extensões, é necessário incluir cada extensão manualmente (veremos isso mais a frente)

#include <SDL.h>

int main() {

// A função SDL_Init(Uint32 flags) é reponsável por inicializar os subsistemas desejados

SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_TIMER | SDL_INIT_JOYSTICK | ...);

// Note que para inicializar múltiplos sistemas você precisa combinar as flags usando
// o operador OR binário (|).

}

Os subsistemas Events, File I/O e Threading são inicializados automaticamente!

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Criando de Janelas
A segunda etapa é criar uma janela para mostrar os gráficos renderizados.

8

#include <SDL.h>

int main() {

SDL_Init(SDL_INIT_VIDEO);

 SDL_Window* window = SDL_CreateWindow(
 "Meu Jogo", // título

 SDL_WINDOWPOS_CENTERED, // posição X
 SDL_WINDOWPOS_CENTERED, // posição Y
 800, // largura
 600, // altura
 SDL_WINDOW_SHOWN // mostrar janela na criação
);

// Flags comuns
// SDL_WINDOW_FULLSCREEN - tela cheia
// SDL_WINDOW_RESIZABLE - permite redimensionar
// SDL_WINDOW_BORDERLESS - sem bordas
// SDL_WINDOW_OPENGL - suporte a OpenGL

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Renderização em SDL
O subsistema de vídeo da SDL2 dá suporte a diferentes APIs de renderização 3D com
aceleração gráfica:

‣ DirectX (Microsoft)

‣ OpenGL (Especificação Aberta e Multiplataforma)

‣ OpenGL ES (Sistemas Embarcados)

‣ Metal (Apple)

‣ Vulkan (Especificação Aberta e Multiplataforma — Mais Moderna que OpenGL)

Além disso, a SDL2 também tem suporte a renderização via sofware, sem aceleração.

9

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Renderização 2D com SDL_Renderer
O subsistema de vídeo da SDL2 também possui uma estrutura, chamada SDL_Renderer, e um
conjunto de funções associadas para desenho de gráficos 2D:

10

#include <SDL.h>

int main() {

SDL_Init(SDL_INIT_VIDEO);

SDL_Window* window = SDL_CreateWindow("Meu Jogo", 100, 100, 800, 600, SDL_WINDOW_SHOWN);

// Criar renderizador
SDL_Renderer* renderer = SDL_CreateRenderer(
 window, // janela associada
 -1, // índice do driver (-1 = primeiro compatível)
 SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC // aceleração de hardware | sincroniza com taxa de atualização
);

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255); // Configurar cor de desenho (RGBA) para preto
SDL_RenderClear(renderer); // Limpar tela
SDL_RenderPresent(renderer); // Desenhar na tela renderização

}

A estrutura SDL_renderer armazena as propriedades (cores, utilizadas na
renderização das primitivas, texturas, etc.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Renderização 2D com SDL_Renderer

11

// Ponto
SDL_RenderDrawPoint(renderer, x, y);

// Linha
SDL_RenderDrawLine(renderer, x1, y1, x2, y2);

// Retângulo (contorno)
SDL_Rect rect = { x, y, width, height };
SDL_RenderDrawRect(renderer, &rect);

// Retângulo (preenchido)
SDL_RenderFillRect(renderer, &rect);

// Múltiplos pontos/linhas
SDL_RenderDrawPoints(renderer, pontos, numPontos);
SDL_RenderDrawLines(renderer, pontos, numPontos);

// Texturas (falaremos mais em aulas futuras)
SDL_RenderCopy(renderer, textura);

Dentre as diversas funções SDL associadas com o SDL_Renderer, estão as de desenho de
primitivas geométricas (ponto, reta, retângulo, polígonos) e texturas:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Renderização com OpenGL
Apesar da SDL2 já implementar diversas funções de renderização 2D, nós não vamos utilizá-las
nos nossos trabalhos práticos 2D, mas sim recriá-las em OpenGL, por dois motivos principais:

‣ Queremos recriar essas funções para entender como elas funcionam;

‣ Criamos deixar os shaders acessíveis para implementar efeitos visuais mais facilmente

12

#include <SDL.h>

int main() {
SDL_Init(SDL_INIT_VIDEO);
SDL_Window* window = SDL_CreateWindow("Meu Jogo", 100, 100, 800, 600, SDL_WINDOW_OPENGL);

// Cria o contexto OpenGL (estrutura parecida com o Renderer)
SDL_GLContext context = SDL_GL_CreateContext(window);

}

Para renderizar com OpenGL, temos que criar uma janela com um contexto OpenGL associado:

Veremos muito mais detalhes de como desenhar objetos na próxima aula!

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Loop principal
A quarta etapa é o loop principal para manter a janela aberta enquanto o usuário não a fecha

13

#include <SDL.h>

int main() {

SDL_Init(SDL_INIT_VIDEO);

SDL_Window* window = SDL_CreateWindow("Meu Jogo", 100, 100, 800, 600, SDL_WINDOW_SHOWN);
SDL_Renderer* renderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC);

SDL_SetRenderDrawColor(renderer, 255, 0, 0, 255);
SDL_RenderClear(renderer);
SDL_RenderPresent(renderer);

// Loop principal
bool running = true;
while (running) {

// Processar todos os eventos disponíveis
SDL_Event event;
while (SDL_PollEvent(&event)) {

if (event.type == SDL_QUIT) // Quando o usuário clicar no ícone (x) para fechar a janela
running = false; // interrompa o loop

}
}

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Destruir objetos SDL2
A quinta e última etapa é destruir os objetos e finalizar a SDL2

14

#include <SDL.h>

int main() {

SDL_Init(SDL_INIT_VIDEO);

SDL_Window* window = SDL_CreateWindow("Meu Jogo", 100, 100, 800, 600, SDL_WINDOW_SHOWN);
SDL_Renderer* renderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC);

SDL_SetRenderDrawColor(renderer, 255, 0, 0, 255);
SDL_RenderClear(renderer);
SDL_RenderPresent(renderer);

bool running = true;
while (running) {

SDL_Event event;
while (SDL_PollEvent(&event))

if (event.type == SDL_QUIT)
running = false;

}

SDL_DestroyRenderer(renderer); // Destrói renderizador
SDL_DestroyWindow(window); // Destrói janela
SDL_Quit(); // Finaliza subsistemas inicializados

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Processando Eventos de Entrada — Fila
Existem duas formas de se processar eventos de entrada em SDL2, a primeira consiste em
processar os eventos da fila de eventos usando SDL_PollEvent

15

SDL_Event event;
while (SDL_PollEvent(&event)) {

switch (event.type) {
case SDL_KEYDOWN: // Tecla pressionada

if (event.key.keysym.sym == SDLK_ESCAPE)
running = 0;

case SDL_KEYUP: // Tecla liberada
break;

case SDL_MOUSEMOTION: // Movimento do mouse
int mouseX = event.motion.x;
int mouseY = event.motion.y;
break;

case SDL_MOUSEBUTTONDOWN: // Botão do mouse pressionado
if (event.button.button == SDL_BUTTON_LEFT)

running = 0;
break;

}
}

Vantagens:

‣ Captura eventos únicos, pressionar/
soltar uma tecla ou botão

‣ Detecção precisa de quando uma tecla
foi pressionada pela primeira vez

‣ Mais adequada para ações de UI (cliques
em botões, menus, entrada de texto, …)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Estado do Teclado e Mouse
A segunda forma de processar eventos de entrada é acessando o estado do teclado e mouse
com as funções SDL_GetKeyboardState e SDL_GetMouseState, respectivamente:

16

// Obter estado de todas as teclas
const Uint8* keyState = SDL_GetKeyboardState(NULL);

// Verificar teclas específicas
if (keyState[SDL_SCANCODE_RIGHT]) {

playerX += 5;
}

if (keyState[SDL_SCANCODE_LEFT]) {
playerX -= 5;

}

// Obter estado do mouse
int mouseX, mouseY;
Uint32 mouseButtons = SDL_GetMouseState(&mouseX, &mouseY);

// Verificar botões do mouse
if (mouseButtons & SDL_BUTTON(SDL_BUTTON_LEFT)) {

// Botão esquerdo pressionado
}

Vantagens:

‣ Verifica estado atual de várias teclas
simultaneamente

‣ Não perde eventos entre quadros

‣ Melhor desempenho para verificações
frequentes

‣ Mais adequada para controles de jogo

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula

A3: Gráficos: Fundamentos e Modelos
‣ Computação Gráfica

‣ Modelos 3D

‣ Pipeline Gráfico

‣ Shaders de Vértice e Fragmentos

‣ Visão geral de um programa OpenGL/GLSL

‣ Compilando Shaders

‣ Contexto OpenGL e Buffers

17

