
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A3: Gráficos I — Fundamentos e Modelos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula
‣ Hardware Gráficos

‣ Monitores, Imagens e Cores

‣ Computação Gráfica

‣ Modelos 3D

‣ Vértices e Atributos

‣ Formatos de especificação

‣ Pipeline Gráfico

‣

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Monitores
Monitores são dispositivos para mostrar imagens digitais. Para isso, eles possuem uma matriz
de pixels atualizada a uma determinada frequência:

3

Monitores CRT Monitores LCD/LED/OLED

Resoluções típicas:

‣ 640x480

‣ 800x600

‣ 1024x768

‣ 1280 x 1024

Taxa de atualização:

‣ De 60Hz a 85Hz

Resoluções típicas:

‣ 1280x720

‣ 1920x1080

‣ 2560x1440

‣ 3840x2160

Taxa de atualização:

‣ 60Hz, 144Hz, 240Hz, …

A principal diferença entre as tecnologias de monitores é
como elas representam e atualizam essa matriz de pixels.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Monitores CRT vs LCD/LED/OLED
Esse vídeo utiliza câmeras com taxas de quadros mais altas do que as de TVs para visualizar
como cada tecnologia (CRT vs LCD/LED/OLED) atualiza as imagens na tela.

4

https://www.youtube.com/watch?v=3BJU2drrtCM&ab_channel=TheSlowMoGuys

Monitores CRT

A imagem é formada por um canhão de elétrons
que atira feixes de elétrons na parte de trás da
tela de vidro de cima para baixo, em linhas,
dezenas de vezes por segundo

Monitores LCD/LED/OLED

A tela é composta por uma matriz de lâmpadas
(ex. LED), portante não há feixe percorrendo a
tela, todos os pixels podem ser atualizados de
forma independente.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Imagens
Imagens são arranjos bidimensionais de pixels (), onde cada pixel é representado por 3
valores (canais): vermelho (R), verde (G) e azul (B)

w × h

5

Pixel
(127, 128, 114)

R G B
w

h

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Cores
O sistema RGB é um dos principais padrões para definição de cores, onde uma cor é definida
pela combinação de 4 canais: Vermelho (), Verde (), Azul () e Transparência (Alpha)R G B

6

‣ Cores são representadas em 32 bits, 8 bits por canal

‣ Intensidade de cada canal varia entre 0 e 255

‣ 232 or ~4 bilhões de cores diferentes

‣ O sistema RGB pode ser visualizado como um cubo,
onde cada ponto interno representa uma cor

[0,1,0]
Verde

[1,1,0]
Amarelo

[1,0,0]
Vermelho

[1,0,1]
Magenta

[0,0,1]
Azul

[1,1,1]
Branco

[0,0,0]
Preto

[0,1,1]
Ciano

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Transparência
O Canal Alpha é um quarto canal de cor usado para adicionar transparência às imagens. Esse
canal é uma adição de software, monitores não desenham um canal de transparência!

7

Imagem RBG
(Fundo branco) Canal Alpha Imagem RBG

(Fundo)
Composição
Final

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Computação Gráfica
Um dos principais problemas da área de Computação Gráfica consiste em gerar uma imagem
(i.e., arranjo bidimensional de pixels) a partir de uma cena composta por:

8

‣ Objetos 3D
Geralmente representados por conjuntos de vértices.

‣ Câmera
Geralmente representada por uma posição, orientação,
distância focal e planos de recorte próximo e distante

‣ Fonte de Luz
Vários tipos de fontes de luz podem ser específicadas:
direcional, ambiente e spot.

‣ Materiais
Propriedades visuais dos objetos, descrevendo como a luz
deve interagir com os objetos.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Renderização em Tempo Real vs. Pré-Renderização
Há uma importante distinção dentro da Computação Gráfica quanto às restrições de tempo
impostas no processo de geração de imagens:

9

Renderização em Tempo Real

‣ As imagens são geradas instantâneamente,
muitas vezes a 60 quadros por segundo;

‣ Algoritmos e técnicas priorizam a velocidade,
mesmo que isso signifique sacrificar um pouco
da qualidade visual;

‣ Possibilita interatividade no processo de
geração de imagens.

Marvel's Spider-Man (2018) — Video Game

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Renderização em Tempo Real vs. Pré-Renderização
Há uma importante distinção dentro da Computação Gráfica quanto às restrições de tempo
impostas no processo de geração de imagens:

10

Pré-Renderização

‣ As imagens são geradas com antecedência,
antes de serem mostradas ao usuário.

‣ Algoritmos e técnicas priorizam qualidade
visual máxima, com efeitos realistas de luz,
sombra, reflexo, refração, etc.

‣ É usada quando o conteúdo não precisa ser
interativo, como em filmes.

https://www.youtube.com/watch?v=MH58W4oDig4&ab_channel=BBCClick
Spider Man: No Way Home (2021) — Filme

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Objetos 3D — Lista de Triângulos
A maioria dos objetos (ou modelos) em jogos são representados por malhas de triângulos. A
forma mais simples de definir uma malha é utilizar uma lista de triângulos:

11

‣ Cada triângulo é formado por um grupo de três vértices
consecutivos {Vi, Vi+1, Vi+2}, Vi ∈ ℝ3

V1
V2

V3
V0

V5 V6

V7

V41

1

Por exemplo, um cubo pode ser representado
por 12 triângulos, dois para cada face.

V0 V1 V3 V1 V2 V3 V0 V5 V1 … V5 V7 V6

0 1 2 3 4 5 6 7 8 … 10 11 35

‣ Os vértices são definidos no espaço do objeto, um sistema de
coordenadas centrado no objeto. Por exemplo, no cubo ao lado:

‣

‣

‣

V1 = [−0.5, 0.5, 0.5]

V3 = [0.5, 0.5, − 0.5]

V5 = [−0.5, − 0.5, 0.5]

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Objetos 3D — Lista de Triângulos Indexadas
Na representação por lista de triâgulos, vários vértices são armazenados mais de uma vez, o
que não é eficiente. A lista indexada de triângulos é uma estrutura mais eficiente:

12

V1
V2

V3
V0

V5 V6

V7

V41

1

Geralmente armazenamos muitos metadados com cada vértice, então
repetir esses dados em uma lista de triângulos desperdiça memória.

V0 V1 V2 V3 V4 V5 V6 V7

0 1 2 3 4 5 6 7

‣ Criamos uma lista com os vértices do modelo aparecendo
apenas uma vez:

‣ Criamos uma lista de índices (inteiros) adicional para definir as
triplas de vértices que formam os triâgulos:

0 1 3 1 2 3 0 5 1 … 5 7 6
0 1 2 3 4 5 6 7 8 … 10 11 35

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Por que triângulos?
Em jogos digitais, malhas triângulos são utilizados para representar os objetos 3D pois
triângulos são:

13

‣ O tipo de polígono mais simples;

‣ Sempre planares;

‣ Permanecem triângulos sob a maioria dos tipos de
transformações;

‣ A maioria das GPUs para jogos são projetadas em
torno da rasterização triangular.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Atributos dos Vértices
Além de suas posições , cada vértice possue atributos associados, para definir
propriedades visuais de cada região do objeto:

Vi = [vx, vy, vz]

14

V1
V2

V3V0

V5 V6

V7

V4

‣ Vetor normal:

‣ Cor:

‣ Coordenadas de Texturas:

‣ ...

Ni = [nix, niy, niz]

Di = [dR, dG, dB, dA]

Ui = [uij, vij]

N1

N0 N3

N4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Atributos dos Vértices — Interpolação
Como especificamos apenas os atributos dos vértices, mas precisamos colorir as superfícies
inteiras, a GPU interpola linearmente os valores dos atributos entre as superfícies:

15

‣ Todos os atributos são interpolados: posição, normal, cor, etc…

‣ Exemplo de como a interpolação de cor afeta a superfície do
triângulo : {V0, V1, V3}

V1
V2

V3V0

V5 V6

V7

V4

N1 N4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Criando Modelos
Modelos 3D para jogos são tipicamente criados com editores gráficos especializados, por
exemplo:

‣ Blender
https://www.blender.org/

‣ Autodesk Maya
https://www.autodesk.com/maya

‣ ZBrush
https://www.maxon.net/zbrush

‣ BlockBench
https://www.blockbench.net/

16

https://www.youtube.com/watch?v=YO5txBWzBqE&ab_channel=Lukky

https://www.blender.org/
https://www.autodesk.com/maya
https://www.maxon.net/zbrush
https://www.blockbench.net/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Salvando/Carregando Modelos
Os editores de modelos 3D exportam objetos para arquivos to tipo FBX, OBJ, STL, etc. Esses
formatos armazenam os vértices, as faces, as coordenadas de texturas, entre outros:

17

https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj

https://en.wikipedia.org/wiki/Stanford_bunny#/media/File:Stanford_Bunny.stl

OBJ file format with ext .obj
vertex count = 2503
face count = 4968
v -3.4101800e-003 1.3031957e-001 2.1754370e-002
v -8.1719160e-002 1.5250145e-001 2.9656090e-002
v -3.0543480e-002 1.2477885e-001 1.0983400e-003
v -2.4901590e-002 1.1211138e-001 3.7560240e-002
v -1.8405680e-002 1.7843055e-001 -2.4219580e-002
v 1.9067940e-002 1.2144925e-001 3.1968440e-002
…
f 1069 1647 1578
f 1058 909 939
f 421 1176 238
f 1055 1101 1042
f 238 1059 1126
f 1254 30 1261

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Pipeline Gráfico
Os frameworks de computação gráfica, como DirectX e OpenGL, geralmente produzem uma
imagem a partir de uma cena em uma sequência de operações, chamado de Pipeline Gráfico:

18

Vertex
Shader Rasterizador Fragment

Shader
Testes e
Mistura

Programável ProgramávelFixo Fixo

Vértices

Aplica transformações
(ex. escala) aos vértices

Converte os vértices em
fragmentos (pixels)

Define as cores dos
pixels de cada fragmento

Combina os fragmentos
verificando oclusões

CPU GPU

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Pipeline Gráfico
A imagem final profuzida pelo Pipeline Gráfico é escrita em em uma matriz de pixels da GPU
chamada Frame Buffer, a qual é lida pelo monitor

19

Monitor

Programa OpenGL para
desenhar um retângulo na tela

‣ Configura propriedades de renderização
‣ Carrega conjunto de vértices do retângulo
‣ Especifica shaders
‣ Compila e liga os shaders

Frame Buffer

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Screen Tearing (“Rasgo na Tela”)
Se um programa OpenGL (ex. um jogo) atualizar o frame buffer enquanto o monitor estiver
atualizando a tela (ex. mover o retângulo para a direita), você pode ver um rasgo na imagem:

20

t1

t2

Quadros
Programa OpenGL para
desenhar um retângulo na tela

‣ Configura propriedades de renderização
‣ Carrega conjunto de vértices do retângulo
‣ Especifica shaders
‣ Compila e liga os shaders

Monitor

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Double Buffering
Jogos geralmente são renderizados usando Double Buffering, onde gráficos são (1) desenhados
em um back buffer, que (2) é trocado com o front buffer quando o quadro inteiro foi desenhado

21

Back Buffer

Operações Draw
SDL_RenderFillRect

(1)

(2)

Trocar Buffers
SDL_RenderPresent

Front Buffer (tela)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A4: Gráficos II
‣ Visão geral de um programa OpenGL/GLSL

‣ Compilando Shaders

‣ Contexto OpenGL e Buffers

‣ Matemática para Jogos

‣ Vetores

‣ Soma, Multiplicação, Normalização, Produto Escalar, Produto Vetorial, …

‣ Transformações geométricas

‣ Translação, Rotação e Escala

‣ Coordenadas Homogêneas

22

