
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A4: Gráficos — OpenGL e Transformações

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Logística
Avisos

‣ A entrega do TP0: Configuração Inicial é nesse quarta feira!

‣ Nem todo mundo entrou no discord

Favor entrar no servidor: https://discord.gg/DGgdzmnU

‣ Nem todo mundo está usando seu nome completo

Favor usar Nome e Sobrenome

2

https://discord.gg/DGgdzmnU

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula
‣ Visão geral de um programa OpenGL/GLSL

‣ Compilando Shaders

‣ Contexto OpenGL e Buffers

‣ Transformações Geométricas

‣ Coordenadas homogêneas

‣ Translação, escala, rotação e reflexão

‣ Combinando Tranformações

3

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

OpenGL
OpenGL (Open Graphics Library) é uma API multiplataforma para renderização de gráficos 2D e
3D. Ela é uma implementação do pipeline gráfico em GPU:

4

‣ Atua como uma ponte entre o programa e a GPU;

‣ Especifica comandos que são enviados à placa gráfica para desenhar objetos na tela.

‣ Possui versões para Web (WebGL) e para sistemas embarcados (OpenGL ES)

Desde a versão 2.0 (2004), permite
programar os vertex e fragment shaders
com uma linguagem chamada GLSL

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

GLSL
GLSL (OpenGL Shading Language) é a linguagem de programação com sintaxe similar ao C
utilizada para escrever shaders, que são pequenos programas executados diretamente na GPU.

5

constexpr std::string_view vertexShaderSource = R"(
#version 330 core
layout (location = 0) in vec2 aPos;
void main() {
 gl_Position = vec4(aPos, 0.0, 1.0);
}
)";

Exemplo de Vertex Shader em GLSL

constexpr std::string_view fragmentShaderSource = R"(
#version 330 core
out vec4 FragColor;
void main() {
 FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}
)";

Exemplo de Fragment Shader em GLSL

‣ Além dos tipos da linguagem C (bool, int, float, etc), suporta vetores (vec) e matrizes (mat)

‣ Como shaders são etapas de um pipeline, eles podem especificar variáveis de entrada (in) e de saída (out)

‣ Shaders são compilados e ligado via comandos OpenGL (glCompileShader, glLinkProgram, ...)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Um programa em OpenGL/GLSL com SDL possui as seguintes partes:

Primeiro programa em OpenGL/GLSL

6

1. Inicialização da SDL com OpenGL

2. Definir os vértices dos modelos

3. Alocar e configurar memória na GPU para os vértices:

‣ Vertex Array Object (VAO)

‣ Vertex Buffer Object (VBO)

‣ Element Buffer Objects (EBO)

4. Escrever e compilar os vertex e fragment shaders

5. Linkar os shaders compilados em um programa na GPU

6. Limpar a tela e desenhar vértices
https://gist.github.com/lucasnfe/ec06ac5b7a0c44a0d3af4c87758536ad

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Definir os vértices dos modelos
Em OpenGL, especificamos modelos com uma lista de triângulos (indexada ou não), onde as
coordenadas dos vértices são números reais no Sistema de Coordenadas Normalizadas:

7

‣ Uma única lista para todos os vértices do modelo;

‣ Cada elemento da lista é uma coordenada de um vértice;

‣ Valores das coordenadas , e variam entre -1.0 to 1.0;

‣ Vértices fora desse intervalo, não serão visíveies na tela;

Por exemplo, os vértices do triângulo ao lado são específicados:

x y z

+1-1

+1

-1

V0 = [−0.5, − 0.5] V1 = [0.5, − 0.5]

V2 = [0.0,0.5]

 float vertices[] = { -0.5f, -0.5f, 0.5f, -0.5f, 0.0f, 0.5f };

É importante manter a consistência de ordem na
especificação dos vértices: sentido horário ou anti-horário

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Alocar e Configurar Memória na GPU
Após especificar todos os vértices em um arranjo de floats, temos que enviá-los para a GPU,
mais especificamente mapeá-los para variáveis no vertex shader, o que é feito em 3 etapas:

8

1. Alocar e ativar um Vertex Array Object (VAO) para receber as configurações de layout dos vértices

GLuint VAO;
glGenVertexArrays(1, &VAO); // Cria VAO
glBindVertexArray(VAO); // Liga VAO

-0.5 -0.5 0.5 -0.5 0.0 0.5 Vertices

VAO

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Alocar e Configurar Memória na GPU
Após especificar todos os vértices em um arranjo de floats, temos que enviá-los para a GPU,
mais especificamente mapeá-los para variáveis no vertex shader, o que é feito em 3 etapas:

9

2. Alocar e ativar um Vertex Buffer Object (VBO) na memória da GPU para receber os vértices especificados na CPU:

GLuint VBO;
glGenBuffers(1, &VBO); // Cria VBO
glBindBuffer(GL_ARRAY_BUFFER, VBO); // Liga VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // Envia dados

Argumentos glBufferData:
1. Índice do atributo do vértice (GL_ARRAY_BUFFER)
2. Número de dimensões do atributo (sizeof(vertices))
3. Tipo de dado do atributo (vertices)
4. Se os dados devem normalizados (GL_STATIC_DRAW)

-0.5 -0.5 0.5 -0.5 0.0 0.5

-0.5 -0.5 0.5 -0.5 0.0 0.5 VBO

Vertices

VAO

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Alocar e Configurar Memória na GPU
Após especificar todos os vértices em um arranjo de floats, temos que enviá-los para a GPU,
mais especificamente mapeá-los para variáveis no vertex shader, o que é feito em 3 etapas:

10

3. Especificar no VAO como o arranjo de vértices deve ser lido pelo vertex shader:

 glEnableVertexAttribArray(0); // Ativa atributo de vértice (location = 0)
 glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);

Argumentos glVertexAttribPointer:
1. Índice do atributo do vértice (location = 0)
2. Número de dimensões do atributo (1,2,3,4)
3. Tipo de dado do atributo (GL_FLOAT)
4. Se os dados devem normalizados (GL_FALSE)
5. Deslocamento em bytes entre vértices (2 * sizeof(float))
6. Deslocamento a partir do primeiro componente ((void*)0)

-0.5 -0.5 0.5 -0.5 0.0 0.5

-0.5 -0.5 0.5 -0.5 0.0 0.5 VBO

Vertices

0 2 4 0 8 0 VAO

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Alocar e Configurar Memória na GPU
Opicionalmente, podemos alocar um Element Buffer Object (EBO) para especificar os modelos
usando uma lista indexada de triângulos:

11

 unsigned int indices[] = { 0, 1, 2 };
 GLuint EBO;
 glGenBuffers(1, &EBO);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

0 1 2

-0.5 -0.5 0.5 -0.5 0.0 0.5 VBO

Indices

0 2 4 0 8 0 VAO

0 1 2 EBO

Argumentos glBufferData:
1. Índice do atributo do vértice (GL_ELEMENT_ARRAY_BUFFER)
2. Número de dimensões do atributo (sizeof(indices))
3. Tipo de dado do atributo (indices)
4. Se os dados devem normalizados (GL_STATIC_DRAW)

0 1 2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Escrever os Shaders: Vertex Shader
O Vertex Shader é um pequeno programa que roda na GPU para aplicar transformações aos
vértices de entrada.

12

constexpr std::string_view vShaderSrc = R"(

#version 330 core

layout (location = 0) in vec2 aPos;

void main() {

gl_Position = vec4(aPos, 0.0, 1.0);

}
)";

‣ É escrito como uma string em GLSL dentro do programa principal (ex. main.cpp)

‣ É compilado/linkado pela CPU e enviado pela GPU usando funções OpenGL (em tempo de execução)

Define a versão do GLSL usada

Declara uma variável de entrada do tipo vec2

Ponto de entrada do shader.

gl_Position é uma variável do tipo vec4 predefinida
pela OpenGL, que armazena a posição final do vértice.

Alterar a variável gl_Position é equivalente a retornar o
valor do vértice transformado (GLSL não usa return)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

constexpr std::string_view fShaderSrc = R"(

#version 330 core

out vec4 FragColor;

void main() {

 FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}
)";

Escrever os Shaders: Fragment Shader
O Fragment Shader é um pequeno programa que roda na GPU para definir a cor final de cada
pixel do fragmento.

13

‣ É escrito como uma string em GLSL dentro do programa principal (ex. main.cpp)

‣ É compilado/linkado pela CPU e enviado pela GPU usando funções OpenGL (em tempo de execução)

Define a versão do GLSL usada

Declara uma variável de saída do tipo vec4

Ponto de entrada do shader

FragColor representa a cor final que será enviada ao
framebuffer.

Alterar a variável FragColor é equivalente a retornar a cor
do vértice (GLSL não usa return)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Compilar os Shaders
Os shaders são compilados e ligados na CPU e depois enviados a GPU. A compilação é feita
usando as funções glCreateShader, glShaderSource e glCompileShader:

14

GLuint compileShader(GLenum type, std::string_view source)
{
 GLuint shader = glCreateShader(type);
 const char* src = source.data();
 glShaderSource(shader, 1, &src, nullptr);
 glCompileShader(shader);

 // Verifica erros de compilação
 GLint success;
 glGetShaderiv(shader, GL_COMPILE_STATUS, &success);

 if (!success) {
 char log[512];
 glGetShaderInfoLog(shader, sizeof(log), nullptr, log);
 std::cerr << "Erro de compilação: ” << log << std::endl;
 }

 return shader;
}

“void main() {
gl_Position = vec4(…)

}”

 Vert. Shader

 Frag. Shader

“void main() {
FragColor = vec4(…)

}”

string source

string source

código de máquina GPU

código de máquina GPU

glCompileShader()

glCompileShader()

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Após compilar os shaders, precisamos ligá-los em um programa executável na GPU, o que é
feito com as funções glCreateProgram, glAttachShader e glLinkProgram:

Ligar os Shaders

15

Program

 Vert. Shader

 Frag. Shader

 Vert. Shader

 Frag. Shader

GLuint createShaderProgram()
{
 GLuint vShader = compileShader(GL_VERTEX_SHADER, vShaderSrc);
 GLuint fShader = compileShader(GL_FRAGMENT_SHADER, fShaderSrc);

 GLuint program = glCreateProgram();
 glAttachShader(program, vShader);
 glAttachShader(program, fShader);
 glLinkProgram(program);

 // Libera shaders após o link
 glDeleteShader(vShader);
 glDeleteShader(fShader);

 return program;
}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Limpar a tela e desenhar os vértices
Após criar o programa executável na CPU, podemos enviá-lo para a GPU com a função
glUseProgram. A GPU irá usá-lo em todas as chamadas de desenho glDrawArrays futuras:

16

Data

Program

VBO
VAO

 Vert. Shader

 Frag. Shader

GLuint shaderProgram = createShaderProgram();

// Enviar programa com os shaders para a GPU
glUseProgram(shaderProgram);

glClearColor(0.1f, 0.1f, 0.15f, 1.0f);

while (running) {
 while (SDL_PollEvent(&event)) {
 if (event.type == SDL_QUIT)
 running = false;
 }

 glClear(GL_COLOR_BUFFER_BIT);
 glDrawArrays(GL_TRIANGLES, 0, 3);

 // Double Buffer
 SDL_GL_SwapWindow(window);
}

Program

 Vert. Shader

 Frag. Shader Frame
Buffer

glUseProgram()

glDrawArrays()
glClear()

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

-0.5 -0.5 0.5 -0.5 0.0 0.5 Vertices

Desenhar os vértices indexados
A função glDrawArrays() é utilizada para desenhar vértices como uma lista de triângulos
básica. Caso você tenha específicado o EBO, terá que usar a função glDrawElements()

17

glClear(GL_COLOR_BUFFER_BIT);
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, 0);
SDL_GL_SwapWindow(window);

 glClear(GL_COLOR_BUFFER_BIT);
 glDrawArrays(GL_TRIANGLES, 0, 3);
 SDL_GL_SwapWindow(window);

-0.5 -0.5 0.5 -0.5 0.0 0.5

-0.5 -0.5 0.5 -0.5 0.0 0.5 VBO

Vertices

0 2 4 0 8 0 VAO

0 1 2 Indices

-0.5 -0.5 0.5 -0.5 0.0 0.5 VBO

0 2 4 0 8 0 VAO

EBO0 1 2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Como shaders fazem parte de um pipeline gráfico, eles podem criar variáveis de entrada (in) e
saída (out) para transferir dados entre as etapas do pipeline.

Variáveis GLSL: Ins e Outs

18

#version 330 core
layout (location = 0) in vec2 aPos;

out vec3 vertexColor;

void main() {
 gl_Position = vec4(aPos, 0.0, 1.0);
 vertexColor = vec3(0.5, 0.0, 0.0);
}

#version 330 core
out vec4 FragColor;

in vec3 vertexColor;

void main() {
 FragColor = vec4(vertexColor, 1.0);
}

‣ Para passar valores entre os shaders, basta criar uma variável de saída (out) no vertex shader com o mesmo de uma
variável de entrada (in) no fragment shader:

Vertex Shader
As entradas do são atributos de vértices, por isso são
definidas com layout (location =)

Fragment Shader
Deve obrigatoriamente ter uma variável de saída (out) do
tipo vec4 especificando uma cor.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Por padrão, as variáveis de entrada (in) do vertex shader são atributos de vértices, ou seja,
possuem um valor diferente para cada vértice. Se quisermos criar uma variável com um valor
único para todos os vértices, podemos definir uma variável com a palavra reservada uniform

Variáveis GLSL: Uniforms

19

#version 330 core
out vec4 FragColor;

Uniform vec3 vertexColor;

void main() {
 FragColor = vec4(vertexColor, 1.0);
}

‣ Variáveis uniform são globais, ou seja, são únicas por objeto de programa

‣ Elas podem ser acessadas tanto pelo vertex shader, quanto pelo fragment shader

‣ Quando definimos valores seus valores, eles são mantidos até que sejam redefinidos ou atualizados.

GLint colorLocation = glGetUniformLocation(shaderProgram, "vertexColor");
glUniform3f(colorLocation, 0.7f, 0.0f, 0.2f); // Red

Programa Principal (CPU)

Fragment Shader (GPU)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Exemplo de uso de Uniforms

20

Programa exemplo de como uniforms em conjunto com variáveis de entrada em GLSL:

GLint colorLocation = glGetUniformLocation(shaderProgram, "inColor");
glUniform3f(colorLocation, 0.7f, 0.0f, 0.2f); // Red

layout (location = 0) in vec2 aPos;
uniform vec3 inColor;
out vec3 outColor;

void main() {
 gl_Position = vec4(aPos, 0.0, 1.0);
 outColor = inColor;
}

in vec3 outColor;
out vec4 FragColor;

void main() {
 FragColor = vec4(outColor, 1.0); // Define a cor do pixel
}

A cor do triângulo é alterarda para quando o
usário pressiona as teclas R, G e B.

https://gist.github.com/lucasnfe/166ee873de3eb23b40afc78d88772f93

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Transformações Geométricas

21

‣ Transformações geométricas mais comuns em jogos:
Translação, Rotação, Escala e Reflexão

‣ Vértices 3D são representado em 4D, o que chamamos de
coordenadas homogêneas

‣ Transformações são representadas por matrizes , que
são combinadas em uma única matriz final, também ,
chamada de model matrix

‣ Apenas a model matrix é enviada ao vertex shader, que
realiza a multiplicaçãm em todos os vértices em paralelo.

M4×4
M4×4

https://gist.github.com/lucasnfe/bd7c8f8ffc28db956451cb9386dc83a3

Para criar múltiplas instâncias de um mesmo objeto, mantemos uma única lista de vértices
representando esse objeto e aplicamos transformações geométricas aos vértices:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Coordenadas Homonêneas
Em aplicações gráficos, pontos e vetores em 3D são tipicamente representados com uma
dimensão a mais, o que chamamos de coordenadas homogêneas:

22

[
x
y
z] →

x
y
z
w

→

x
y
z
1

Para representar pontos em coordenadas
homogênas, adicionamos uma dimensão :

Pi ∈ ℝ3

w = 1

Pi ∈ ℝ3

Coordenadas Homogêneas nos permitem combinar as transformações em uma única matriz, o que é mais
eficiente, pois evita tráfego CPU x GPU

Para representar vetores (direções) em
coordenadas homogênas, adicionamos dimensão :

Vi ∈ ℝ3

w = 0

[
x
y
z] →

x
y
z
w

→

x
y
z
0

Vi ∈ ℝ3

Por hora, vamos utilizar
apenas essa representação
com para vértices,
que são pontos.

w = 1

Mais tarde no curso, iremos
usar essa representação
com para outras
operações

w = 0

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Translação
Uma transformação de translação em coordenadas homogêneas é presentada por
uma matriz identidade, onde a quarta coluna contém o deslocamento em cada eixo:

T(x, y, z)

23

V′￼i =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

x
y
z
1

=

x + tx
y + ty
z + tz

1

V′￼i = T(x, y, z) ⋅ Vi

x

y

tx
x

y

V1 V2

V3

V1 V2

V3

V′￼1 V′￼2

V′￼3

‣ : deslocamento em

‣ : deslocamento em

‣ : deslocamento em

tx x
ty y

tz z

ty

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Escala
Uma transformação de escala em coordenadas homogêneas é presentada por uma
matriz identidade, onde a diagonal principal contém os fatores de escala em cada eixo:

S(x, y, z)

24

x

y

É importante observar que se o modelo não estivesse centralizado
no sistema de coordenadas, a escala mudaria o centro do objeto.

V′￼i =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

x
y
z
1

=

x ⋅ sx
y ⋅ sy
z ⋅ sz

1

V′￼i = S(x, y, z) ⋅ Vi

V′￼1 V′￼2

V′￼3

‣ : escala em

‣ : escala em

‣ : escala em

sx x
sy y

sz z

x

V1 V2

V3

y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Rotação em 2D
Antes de falarmos de rotação em 3D utilizando coordenadas homogêneas, vamos ver como
realizar uma transformação de rotação em 2D, com uma matriz de rotação :R

25

V′￼1

V′￼2

V′￼3

y

V′￼i = [cos θ −sin θ
sin θ cos θ] ⋅ [vx

vy]
V′￼i = R ⋅ Vi

‣ : ângulo de rotaçãoθ

x

V1 V2

V3

y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Rotação em 2D
Vejamos como a matriz de rotação é construída em 2D:R

26
É importante observar que se o modelo não estivesse centralizado no
sistema de coordenadas, a rotação também mudaria o centro do objeto.

V′￼ = [cos θ −sin θ
sin θ cos θ] ⋅ [x

y] → V′￼ = R ⋅ Vi

x = r ⋅ cos α → x′￼ = r ⋅ cos(α + θ)
y = r ⋅ sin α → y′￼ = r ⋅ sin(α + θ)

x′￼ = r ⋅ cos α ⋅ cos θ − r ⋅ sin α ⋅ sin θ
y′￼ = r ⋅ cos α ⋅ sin θ + r ⋅ sin α ⋅ cos θ

x′￼ = x ⋅ cos θ − y ⋅ sinθ
y′￼ = x ⋅ sin θ + y ⋅ cosθ V1

V2

V3

V′￼2

V′￼3

V′￼1

x

yα
x′￼

V′￼3

y′￼

θ

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Rotação em 3D
Em 3D, temos 3 diferentes eixos para fazer a rotação: , e . As matrízes de rotação são
diferentes para cada eixo. Abaixo elas estão definidas já em coordenadas homogêneas:

x y z

27

V1 V2

V3

y

z

V′￼i =

1 0 0 0
0 cos θ −sin θ 0
0 sin θ cos θ 0
0 0 0 1

x
y
z
1

x

Rx(θ)

Ry(θ)
V′￼i =

cos θ 0 sin θ 0
0 1 0 0

−sin θ 0 cos θ 0
0 0 0 1

x
y
z
1

V′￼i =

cos θ −sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

x
y
z
1

A rotação no eixo é a mesma rotação que fazemos em 2D.z

Rz(θ)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Reflexão
Uma transformação de reflexão pode ser realizada com uma matriz de escala , porém
especificando valores negativos para um ou três dos eixos:

S(x, y, z)

28

y

x

V1 V2

V3

y

V′￼i =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

x
y
z
1

=

x ⋅ 1
y ⋅ −1
z ⋅ 1

1

V′￼i = S(x, y, z) ⋅ Vi

‣ : escala em

‣ : escala em

‣ : escala em

sx x
sy y

sz z

V1 V2

V3

É importante observar que se apenas dois dos fatores de escala foram
negativos, o objeto irá rotacionar radianos (180 graus)π

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Combinando Transformações
Utilizando coordenadas homogêneas, podemos relizar composições de transformações
multiplicandos as matrizes de transformação:

29

V1 V2

V3

V′￼1 V′￼2

V′￼3

1. Escala uniforme de 0.5:

2. Rotação de 180 graus no eixo z:

3. Translação

S(0.5,0.5,0.5)

Rz(180)

T(1,2,0)

V′￼i = T(1,2,0) ⋅ Rz(180) ⋅ S(0.5,0.5,0.5) ⋅ Vi

A multiplicação de matrízes não é comutativa!

‣ Mesmas transformações em ordens diferentes podem gerar
resultados diferentes!

‣ Para evitar problemas, realizamos as transformações na
ordem do exemplo acima (leia as multiplicações de trás para
frente): 1. Escala, 2. Rotação e 3. Translação

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Como os modelos podem possuir muitos vértices, é mais eficiente aplicar as transformações
na GPU. Para isso, criamos e combinamos as matrízes na CPU e as enviamos ao Vertex Shader:

Criando Matrizes de Transormação em OpenGL

30

#version 330 core
layout (location = 0) in vec2 aPos;
uniform mat4 model;

void main() {
 gl_Position = model * vec4(aPos, 0.0, 1.0);
}

 GLint modelLoc = glGetUniformLocation(shaderProgram, “model");

 Matrix4 model = Matrix4::CreateTranslation(Vector3(0.0f, 0.25f, 0.0f));
 model = Matrix4::CreateScale(Vector3(0.5f, 0.5f, 1.0f)) * model;
 model = Matrix4::CreateRotationZ(Math::ToRadians(180.0f)) * model;

glUniformMatrix4fv(modelLoc, 1, GL_FALSE, model3.GetAsFloatPtr());

Vertex Shader (GPU)

1. Criar uma matriz (uniform) no vertex shader

2. Multiplicar essa matriz pelos vértices de entrada

4 × 4

Programa Principal (CPU)

1. Buscar o endereço da matriz (uniform) na GPU com a função
glGetUniformLocation()

2. Criar uma model matriz na CPU multiplicando diferentes
matrizes de transformações

3. Enviar model matriz para a GPU com a função
glUniformMatrix4fv()

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A5: Game Loop
‣ Técnicas de controle de tempo em jogos

‣ FPS fixo vs. FPS dinâmico

31

