DCC192 CEIG

2025/7

Desenvolvimento de Jogos Digitais
A4: Graficos — OpenGL e Transformacoes

Prof. Lucas N. Ferreira

Logistica
Avisos

» Aentrega do TPO: Configuracgao Inicial € nesse quarta feira!

» Nem todo mundo entrou no discord

Favor entrar no servidor: https://discord.qgg/0GgdzmnU

» Nem todo mundo esta usando seu nome completo

Favor usar Nome e Sobrenome

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

https://discord.gg/DGgdzmnU

Plano de Aula

» Visao geralde um programa OpenGL/GLSL
» Compilando Shaders
» Contexto OpenGL e Buffers
» Iransformacoes Geometricas
» Coordenadas homogéneas
» Translacao, escala, rotacao e reflexao

» Combinando Tranformacoes

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

OpenGL u

OpenGL (Open Graphics Library) € uma APl multiplataforma para renderizacao de graficos 2D e
S3D. Ela é uma implementacao do pipeline grafico em GPU:

» Atua como uma ponte entre o programa e a GPU;
» Especificacomandos que sao enviados a placa grafica para desenhar objetos na tela.

» Possuiversoes para Web (WebGL) e para sistemas embarcados (OpenGL ES)

Feature expansion Feature expansion Feature expansion
[OpenGL 1.5]——}[OpenGL 2.0]—’[OpenGL 3.3]—}[OpenGL 4.3] Desde a versdo 2.0 (2004)/ ,oermite
* oo * o * Sl programar os vertex e fragment shaders

OpenGL ES
2.0

[OpenGL ES
1.1

com uma linguagem chamada GLSL
3.0

Specifications support shader functions.

]4....,

Incompatible

compatible

[WebGL 1.0 J

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

GLSL "

GLSL (OpenGL Shading Language) € a linguagem de programacao com sintaxe similar ao C
utilizada para escrever shaders, gue sao pequenos programas executados diretamente na GPU.

» Alem dostiposdalinguagemC (bool, int, float, etc),suportavetores (vec) e matrizes (mat)
» Como shaders sao etapas de um pipeline, eles podem especificar variaveis de entrada (in) e de saida (out)

» Shaders sao compilados e ligado via comandos OpenGL (glCompileShader, glLinkProgram, ...)

constexpr std::string view fragmentShaderSource = R"(
#version 330 core

out vec4 FragColor;

volid main() {

constexpr std::string view vertexShaderSource = R"(
#version 330 core

layout (location = 0) in vec2 aPos;

volid main() {

gl Position = vec4d(aPos, 0. FragColor = vec4(1.0, 0.0,

Exemplo de Vertex Shader em GLSL Exemplo de Fragment Shaderem GLSL

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Primeiro programa em OpenGL/GLSL

13

Um programa em OpenGL/GLSL com SDL possui as sequintes partes:

Triangulo OpenGL (C++17)

https://gist.github.com/lucasnfe/ec06acbb7a0c44a0d3af4c87/58536ad

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

1.
2.
3.

4.
5.
B.

Inicializacao da SDL com OpenGL
Definir os vértices dos modelos
Alocar e configurar memoria na GPU para os vertices:
» Vertex Array Object (VAO)
» Vertex Buffer Object (VBO)
» Element Buffer Objects (EBO)
Escrever e compilar os vertex e fragment shaders
Linkar os shaders compilados em um programa na GPU

Limpar atela e desenhar vertices

Definir os vértices dos modelos i

-m OpenGL, especificamos modelos com uma lista de triangulos (indexada ou nao), onde as
coordenadas dos vertices sao numeros reais no Sistema de Coordenadas Normalizadas:

+]

» Uma unica lista para todos os vertices do modelo;

» (Cadaelementodalista e umacoordenada de um veéertice;

» Valores das coordenadasx, y e zvariamentre -1.0 to 1.0;

» Veértices fora desse intervalo, nao serao visiveies na tela:

Por exemplo, os vertices do trianqulo ao lado sao especificados:

float vertices[] = { -0.5f, -0.5f, 0.5f, -0.5f, 0.0f, O0.5f };

E importante manter a consisténcia de ordem na
especificacao dos vertices: sentido horario ou anti-horario

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Alocar e Configurar Memoria na GPU UL

Apds especificar todos os vértices em um arranjo de floats, temos que envia-los para a GPU,
mais especificamente mapea-los para variaveis no vertex shader, o que e feito em 4 etapas:

1. Alocar e ativar um Vertex Array Object (VAQO) para receber as configuracoes de layout dos vértices

GLuint VAO;

-0.51-0.51 0.5 |-0.5| 0.0 | 0.5 | Vertices

VAQ

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Alocar e Configurar Memoria na GPU i

Apds especificar todos os vértices em um arranjo de floats, temos que envia-los para a GPU,
mais especificamente mapea-los para variaveis no vertex shader, o que e feito em 4 etapas:

2. Alocar e ativar um Vertex Buffer Object (VBO) na memoria da GPU para receber os vertices especificados na CPU:

GLuint VBO;

(L1,
, VBO);

, sizeof(vertices), vertices,) ;

Argumentos glBufferData:

05]05) 95 [05] 05|05] VErtieeS 4 i gice do atributo do vértice (GL_ARRAY_BUFFER)

. Numero de dimensoes do atributo (sizeof(vertices))

2
5. Tipo de dado do atributo (vertices)
VAQO /

. Se os dados devem normalizados (GL_STATIC_DRAW)

-0.51-05(0.5 1-05(0.0 0.5 VBO

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Alocar e Configurar Memoria na GPU i

Apds especificar todos os vértices em um arranjo de floats, temos que envia-los para a GPU,
mais especificamente mapea-los para variaveis no vertex shader, o que e feito em 4 etapas:

3. Especificar no VAO como o arranjo de vertices deve ser lido pelo vertex shader:

, * sizeof(float), (void*)0);

Argumentos glVertexAttribPointer:
-0.5(-0.5| 0.5 |-0.5] 0.0 | 0.5 | Vertices

Indice do atributo do vértice (location = 0)

Numero de dimensoes do atributo (1,2,3,4)
Tipo de dado do atributo (GL_FLOAT)
Se os dados devem normalizados (GL_FALSE)

0 2 4 0 8 0 VAQO

o05l-05105!-05l 001! 05 VBO Deslocamento em bytes entre vertices (2 * sizeof(float))

e R

Deslocamento a partir do primeiro componente ((voidx)0)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 10

Alocar e Configurar Memoria na GPU i

Opicionalmente, podemos alocar um Element Buffer Object (EBO) para especificar os modelos
Usando uma lista indexada de triangulos:

unsigned int indices[] = { 0, 1, }i
GLuint EBO;

(1L, &EBO);
, EBO);
, sSizeof(indices), indices,

Argumentos glBufferData:
‘0‘1‘2 Indices C . L.
1. Indice do atributo do vertice (GL_ELEMENT_ARRAY_BUFFER)

. Numero de dimensoes do atributo (sizeof(indices))

2
5. Tipo de dado do atributo (indices)
/

0 ‘ 1 ‘ 2 ‘ =BU . Se os dados devem normalizados (GL_STATIC DRAW)

ol2]a4|o]|s]| o] vao

-05[-05|05]-05[0005]| VBO

0 1 2

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 11

Escrever os Shaders: Vertex Shader i

O Vertex Shader ¢ um pegueno programa que roda na GPU para aplicar transformacoes aos
vertices de entrada.

» E escrito como uma string em GLSL dentro do programa principal (ex. main.cpp)

» E compilado/linkado pela CPU e enviado pela GPU usando funcdes OpenGL (em tempo de execucao)

std::string_view vShaderSrc = R"(

#version 330 core Define a versao do GLSL usada
layout (location = @) in vec2 aPos; Declara uma variavel de entrada do tipo vec?
void main() A Ponto de entrada do shader.

gl_Position = vec4(aPos, 0.0, 1.0); gl Position éumavariavel do tipo vec4 predefinida
pela OpenGL, que armazena a posicao final do vertice.

Alterar a variavel g1 Position e equivalente aretornaro
valor do vértice transformado (GLSL néo usa return)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 12

Escrever os Shaders: Fragment Shader i

O Fragment Shader ¢ um pequeno programa que roda na GPU para definir a cor final de cada
pixel do fragmento.

» E escrito como uma string em GLSL dentro do programa principal (ex. main.cpp)

» E compilado/linkado pela CPU e enviado pela GPU usando funcdes OpenGL (em tempo de execucao)

std::string_view fShaderSrc = R"(

#version 330 core Define aversao do GLSL usada
out vecd FragColor; ====-=======mmmmmmm e e Declara uma variavel de saida do tipo vec4
void main() { Ponto de entrada do shader

FragColor = vec4(1.0, 0.0, 0.0, 1.0); FragColor representaa cor final que sera enviada ao
framebuffer.

Alterar a variavel FragColor e equivalente a retornar a cor
do vértice (GLSL n@o usa return)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 18

Compilar os Shaders i

Js shaders sao compilados e ligados na CPU e depois enviados a GPU. A compilacao e feita
Usando as funcoes glCreateShader, glShaderSource € glCompileShader:

string source

GLuint compileShader (GLenum type, std::string view source)

{ _ . - “void main() {
Llltilive Sazder = (type); gl Position = vec4(..)
const char* src = source.data(); " o
(shader, , &src, nullptr); }
(shader); .
glCompileShader ()
GLint success; Vert. Shader codigo de maquina GPU

(shader, , &success);

1if (!success) {

string source
char log] Il ¢
(shader, sizeof(log), nullptr, log);

std: :cerr "Erro de compilacao: ” log std::endl;

}

“void main() {
FragColor = vec4(..)

}Il

return shader;

glCompileShader ()

Frag. Shader | codigo de maquina GPU

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 14

Ligar os Shaders i

Apos compilar os shaders, precisamos liga-los em um programa executavel na GPU, o que &
feito com as funcoes glCreateProgram, glAttachShader € glLinkPrograms:

GLuint createShaderProgram()

{

GLuint vShader compilleShader (, VShaderSrc);
GLuint fShader compilleShader (, fShaderSrc);
| Program
GLuint program = ()7
(program, vShader);
(program, fShader); ‘ Vert. Shader ‘ ‘ Vert. Shader ‘
(program) ;
‘ Frag. Shader ‘ ‘ Frag. Shader ‘
(vShader);

(£fShader);

return program;

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Limpar a tela e desenhar os vértices i

Apds criar o programa executavel na CPU, podemos envia-lo paraa GPU com a funcao
glUseProgram. A GPU ira usa-lo em todas as chamadas de desenho glDrawArrays futuras:

GLuint shaderProgram = createShaderProgram() ;

// Enviar programa com os shaders para a GPU

(shaderProgram) ;
glClearColor (, , Program Data
VAO
while (running) { ‘Vert. Shader ‘ LT
while (SDL PollEvent (&event)) ({ LIIII[] VBO
if (event. == SDL QUIT) ‘Frag. Shader ‘ Frame
running = false;
} Buffer
Program
glClear (-
glDrawArrays (; ‘ Vert. Shader ‘
‘Frag.Shader ‘
SDL GL SwapWindow(window) ; lUseProgram
glUseProgram() glClear ()

}

glDrawArrays ()

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Desenhar os vértices indexados 171

Afuncao glDrawArrays() eL

basica. Caso vocé tenha especifi

-0.51-0.5]1 0.5 [-0.51 0.0 | 0.5
0 2 4 0 8 0
-0.51-05(0.5 1-05(0.0] 0.5

glClear (
glDrawArrays (
SDL GL SwapWindow(window) ;

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

tilizada para desenhar vertices como uma lista de triangulos
cado o EBO, tera que usarafuncao glDrawElements ()

Vertices -051-051 05 |-0.5]1 0.0 0.5 | Vertices

‘o‘l‘z‘lndices

VAQ 0 2 4 0 8 0 VAQ

VBO -0.51-051 05 1-05(10.0] 0.5 VBQO

glClear (
glDrawElements (
SDL_GL_SwapWindow(window) ;

17

Variaveis GLSL: Ins e Outs i

Como shaders fazem parte de um pipeline grafico, eles podem criar variaveis de entrada(in) e
saida(out) para transferir dados entre as etapas do pipeline.

» Para passar valores entre os shaders, basta criar uma variavel de saida(out) no vertex shader com o mesmo de uma
variavel de entrada(in)no fragment shader:

#version core
layout (location = 0) in vec2 aPos;

#version core
out vec4 FragColor;

out vec3 vertexColor;

in vec3 vertexColor;

volid main() {

gl Position vec4 (aPos,
vertexColor vec3 (

volid main() {

FragColor = vec4(vertexColor,) ;
’

}

Vertex Shader Fragment Shader
As entradas do sao atributos de vértices, por isso sao Deve obrigatoriamente ter uma variavel de saida(out) do
definidas com layout (location =) tipo vec4 especificando uma cor.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 18

Variaveis GLSL: Uniforms i

20r pac

rao, as variaveis de e

D0OSsue

M um valor diferente

ntrada(in)do vertex shader sao atributos de vértices, ou seja,

Dara cada vertice. Se quisermos criar uma variavel com um valor

Unico para todos os vertices, podemos definir uma variavel com a palavrareservada uniform

» Variaveisuniform sao globais, ou seja, sao unicas por objeto de programa

» Elas podem ser acessadas tanto pelo vertex shader, quanto pelo fragment shader

» (Quando definimos valores seus valores, eles sao mantidos até que sejam redefinidos ou atualizados.

GLint colorLocation =

(colorLocation,

Programa Principal (CPU)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

#version core
out vec4 FragColor;

(shaderProgram, "vertexColor");

Uniform vec3 vertexColor;

vold main() {
FragColor = vec4(vertexColor,

}

Fragment Shader (GPU)
19

Exemplo de uso de Uniforms "1

Programa exemplo de como uniforms em conjunto com variaveis de entradaem GLSL:

Triangulo OpenGL (C++17)
GLint colorLocation = (shaderProgram, "inColor");

(colorLocation,) ;

layout (location = 0) in vec2 aPos;
uniform vec3 inColor;
out vec3 outColor;

volid main() {
gl Position = vec4(aPos,
outColor = inColor;

in vec3 outColor;
out vecd FragColor;

A cor do triangulo € alterarda para quando o
volid main() {

usario pressiona as teclas R, G e B. FragColor = vecd (outColor,),
}

DCC192 - 2025/2 - Prof. Lucas N. Ferreira
https://qgist.github.com/lucasnfe/166ee873dedeb23b40afc/78d88772f93

Transformacoes Geomeétricas i

Para criar multiplas instancias de um mesmo objeto, mantemos uma unica lista de vertices
representando esse objeto e aplicamos transformagoes geométricas aos vértices:

» Transformacoes geometricas mais comuns em j0gos:
Translacao, Rotacao, Escala e Reflexao

» Vértices 3D sao representado em 4D, o que chamamos de
coordenadas homogéneas

» TransformacOes sao representadas por matrizes M, 4, que

sdo combinadas em uma unica matriz final, também M, 4,
chamada de model matrix

» Apenas a model matrix é enviada ao vertex shader, que
realiza a multiplicacam em todos os vertices em paralelo.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira https://qist.github.com/lucasnfe/bd7c8f8ffc28db956451cb9386dc835ad

Coordenadas Homonéneas

-m aplicacoes graficos, pontos e vetores em 30 sao tipicamente representados com uma
dimensao a mais, o0 gue chamamos de coordenadas homogéneas:

13

Para representar pontos P; & R3 em coordenadas Para representar vetores(diregoes) V: € R3 em
homogénas, adicionamos uma dimensaow = 1: coordenadas homogénas, adicionamos dimensdao w = 0:
3
P,eR V.e R

; X X1 Porhora, vamos utilizar X X X | Mais tarde no curso, iremos
. y -

v = Y R b apenas essa representacao vl — Y - |, Usar essa representagao

z < < comw = | paravértices, Z < comw = 0 para outras

W 1] que sdopontos. W O] operacdes

Coordenadas Homogéneas nos permitem combinar as transformacoes em uma unica matriz, o0 que € mais
eficiente, pois evita trafego CPU x GPU

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

22

Translacao

Jma transfor

Jma matriz ic

entidade, onde a quarta coluna cont

‘/l, — T(x’y, Z) . ‘/l

macao de translagao em coordenadas

1

nomogéneas 1(x,y, z) é presentada por

em

0 deslocamento em cada eixo:

Y o3
100 &, X+, T
v 0 1 0 g |y _[v+s Ly
l O O 1 tZ i Z+tZ V3 ---------- >§
000 1 1 f.
X X
v, » £.:deslocamentoemx Vi V,

» 1, deslocamentoemy

) tZ: deslocamentoemz

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

25

Escala

Y

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

1

Uma transformacao de escala em coordenadas homogéneas S(x, y, z) é presentada por uma
matriz identidade, onde a diagonal principal contem os fatores de escala em cada eixo:

‘/i,zs(xayaZ)"/i Y
s 00 Of XS,
V’: O Sy O O y p— y°Sy Vé
o 0 s, of |? Z-
1 1
0 0 0 1
X X

» §.:.escalaemx
» 5, escalaemy Vi %

P S, escalaemz

E importante observar que se o modelo nao estivesse centralizado
no sistema de coordenadas, a escala mudaria o centro do objeto. 24

Rotacao em 2D i

Antes de falarmos de rotacao em 3D utilizando coordenadas homogéneas, vamos ver Como
realizar uma transformacao de rotagao em 20, com uma matriz de rotacao R:

y y
Vl.’ — R Vl
0 —sin 0 Vy
v v = |cos .
3 ’ Lin 0 cos 0] [Vy] %
X Vi
V, v, » 0: angulo de rotacao v,

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Rotacao em 2D

Vejamos como a matriz de rotacao R € construida em 2D:
xX=r-cosa—x =r-cos(a+ 0)
y=r-sina—y =r-sin(a+0)

xX'=r-cosa-cos@—r-sina-sind
y=r-cosa-sin@+r-sina-cosb

xX'=x-cos 0—y-sind

y=x-sin 0+y-cosf

V= cos 0 —sin 0 X LV =R-V
sin @ cos 0

<

| E importante observar que se o modelo ndo estivesse centralizado no
DCC192 - 2025/2 - Prof. Lucas N. Ferreira sistema de coordenadas, a rotagdo também mudaria o centro do objeto. 20

Rotacao em 3D

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

R (0)

R (6)

R.(0)

-m 30, temos 3 diferentes eixos para fazer arotacao: x, y e z. As matrizes de rotacao sao
diferentes para cada eixo. Abaixo elas estao definidas ja em coordenadas homogéneas:

1 0 0 O] [x
v — O cos@ —sin@ O] |V
’ O sin@® cosB 0] |<
0 0 o 1] Ll
cos@ 0 sin@ 0] [x
v — 0 1 0 ol |Y
’ —sin@® 0 cos@ 0| |<
o o o0 1] 1Ll

cos @ —sin 0 0O

V =

’ 0 0

0
sin@® cos@d 0O 0
1 O

0 0 0 1

—_ N = =

A rotacao no eixo 7 ¢ a mesma rotacao que fazemos em 2D.

7

27

Reflexao L
Uma transformacao de reflexao pode ser realizada com uma matriz de escala S(x, y, z), porém
especificando valores negativos para um ou trés dos eixos:
Y ‘/i,:S(xayaZ)°‘/i Y
1 0 0 Of [x x-1
v |0 =1 0 0] [Y]_ [y I
v, 710 0 1 0] |% z-1
0 0 o0 1] Ll 1 Vi Z
X
v vV » §.:.escalaemx
1 2

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

% escalaemy V3

P S, escalaemz

E importante observar que se apenas dois dos fatores de escala foram
negativos, o objeto ira rotacionar 7 radianos (180 graus) 28

13

Combinando Transformacoes

Utilizando coordenadas homogéneas, podemos relizar composicoes de transformacoes
multiplicandos as matrizes de transformacao:

1. Escala uniforme de 0.5: §(0.5,0.5,0.5) v’ vV
1 2
2. Rotacao de 180 graus no eixo z: R (180) V
3. Translacao 7(1,2,0) V7
Vi 3

Vi =T(1,2,0) - R (180) - $(0.5,0.5,0.5) - V,

A multiplicacao de matrizes nao é comutatival!

» Mesmas transformacoes em ordens diferentes podem gerar
resultados diferentes!

» Paraevitar problemas, realizamos as transformacoes na
ordem do exemplo acima(leia as multiplicacoes de tras para
frente): 1. Escala, 2. Rotacao e 3. Translacao

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 29

Criando Matrizes de Transormacao em OpenGL i

Programa Principal (CPU)

1. Buscar o endereco da matriz(uniform)na GPU com a funcao
glGetUniformLocation()

2. Criar uma model matrizna CPU multiplicando diferentes
matrizes de transformacoes

3. Enviar model matriz paraa GPU com a funcao
glUniformMatrix4fv()

GLint modelLoc = glGetUniformLocation(shaderProgram, “model");

Matrix4 model = Matrix4::CreateTranslation(Vector3(0.0f, 0.25f, 0.0f));

model = Matrix4::CreateScale(Vector3(0.5f, 0.5f, 1.0f)) *x model;
model = Matrix4::CreateRotationZ(Math::ToRadians(180.0f)) *x model;

glUniformMatrix4fv(modelLoc, 1, GL_FALSE, model3.GetAsFloatPtr());

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

Como 0s modelos podem possuir muitos vertices, € mais eficiente aplicar as transformacoes
na GPU. Paraisso, criamos e combinamos as matrizes na CPU e as enviamos ao Vertex Shader:

Vertex Shader (GPU)

1. Criaruma matriz4 X 4 (uniform)no vertex shader

2. Multiplicar essa matriz pelos vértices de entrada

#version core
layout (location = 0) in vec2 aPos;
uniform mat4 model;

void main() {
gl Position = model * vec4(aPos,

}

50

Proxima aula

A5: Game Loop

» Técnicas de controle detempo em jogos

» FPSfixovs. FPS dinamico

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

31

