
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A6: Game Objects

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Logística
Avisos

‣ O TP1: Pong foi publicado!

‣ Nota: 10% da nota dos TPs!

‣ Entrega: 15/09 (11:59h)

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula
‣ Game Update: Atualizando Objetos do Jogo

‣ Objetos Dinâmicos , Estáticos e Gatilhos

‣ Modelagem de Objetos

‣ Modelo de hierarquia de classes

‣ Modelo de componentes

‣ Modelo híbrido

3

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Loop

4

Na última aula vimos que um jogo é um laço (loop) que repete as seguintes três funções:
ProcessInput(), Update() e GenerateOutput()

1. while Game is running

2. ProcessInput()

3. UpdateGame()

4. GenerateOutput()

A etapa de Update implementa toda a “lógica" do jogo
(mecânicas, regras, objetivos, …)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Update

5

while !goal:
// Atualizar posição das raquetes
update player1.position based on input1
update player2.position based on input2

// Atualizar posição da bola
update ball.velocity based on colision
ball.position += ball.velocity

// Verificar se houve gol
if ball.position > LEFT_BOUND or
 ball.position < RIGHT_BOUND

goal = true

// Atualizar placar
...

Em jogos simples, como o Pong, é razoável implementar o Update do jogo em uma única função,
pois a sua lógica de atualização é relativamente simples :

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Update

6

while player.lives > 0
// Atualizar posição

update player.position based on input

// Atualizar posição

foreach Ghost g in world
if player collides with g
kill either player or g

else
update AI for g

// Comer as pastilhas/power ups

...

Para jogos um pouco mais complexos, como o PacMan, isso já se torna inviável, pois a
lógica do jogo é complexa demais para ser escrita em uma única função:

‣ Verificação/Resolução
de colisão não é trivial

‣ Cada fantasma tem sua
IA, também não trivial

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Update
Em engines modernas, o jogo geralmente é um objeto que contém uma lista de Game Objects
(ou Actors) onde cada objeto implementa seu próprio ProcessInput(), Update() e Draw()

7

Game

+ Initialize()
+ RunLoop()
- ProcessInput()
- Update()
- GenerateOutput()

+ AddActor(a: Actor)
+ RemoveActor(a: Actor)

- mActors:vector<Actor>

Actor

+ ProcessInput()
+ Update()
+ Draw()

OnProcessInput()
OnUpdate()

mState: int
mPosition : Vector2
mScale : Vector2
mRotation : float
mGame : Game*

Paddle

+ OnProcessInput()
+ OnProcessUpdate()
+ Draw()

- mDir: int

‣ +ProcessInput() e +Update() são chamados pelo Game

‣ #OnProcessInput() e #OnUpdate() são estendidos pela classe filha,
dependendo do estado (ativo ou pausado) mState do Actor

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Update
Em engines modernas, o jogo geralmente é um objeto que contém uma lista de Game Objects
(ou Actors) onde cada objeto implementa seu próprio ProcessInput(), Update() e Draw()

8

class Game {
public:
void AddActor(Actor *obj);
void RemoveActor(Actor *obj);

private:
 void ProcessInput();
 void Update(float deltaTime);
 void GenerateOutput();

 vector<Actor *> mActors;
};

void Game::ProcessInput() {
 for (auto actor: mActors)
 actor->ProcessInput(deltaTime);
}

void Game::Update(float deltaTime) {
 for (auto actor: mActors)
 actor->Update(deltaTime);
}

void Game::Draw() {
 for (auto actor: mActors)
 actor->Draw(deltaTime);
}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Update

9

‣ Adicionar um elemento ao final da lista
faz com que ele seja atualizado antes
mesmo dele ser visualizado

‣ Remover um elemento da lista que está
antes de pula o update de um objeto i

void Game::Update(float deltaTime) {
 for (auto actor: mActors)
 actor->Update(deltaTime);
}

Adicionar/Remover game objects durante o update de um objeto pode ser um problema:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Update
Adicionar/Remover game objects durante o update de um objeto pode ser um problema:

10

‣ Adicionar um elemento ao final da lista
faz com que ele seja atualizado antes
mesmo dele ser visualizado

‣ Remover um elemento da lista que está
antes de pula o update de um objeto

‣ Solução: adicionar uma lista auxiliar de
"atores pendentes" para armazenar
objetos adicionados durante os updates
dos objetos e adicioná-los à lista de
actors no final do update

i

void Game::Update(float deltaTime) {
 mUpdatingActors = true;
 for (auto actor: mActors)
 actor->Update(deltaTime);
 mUpdatingActors = false;

 for (auto pendActor: mPendingActors)
 mActors->Add(pendActor);

 mPendingActors.clear();
}

void Game::AddActor(Actor *actor) {
 if (mUpdatingActors)
 mPendingActors->Add(actor);

 else
 mActors->Add(actor);
}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

O que são game objects?

11

Até agora temos como adicionar objetos no jogo, mas o que é um game object em si? quais
atributos e métodos eles devem ter?

class Actor {
public:
 Actor();

 ????

private:
 ????
};

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Objects Dinâmicos

12

Objetos dinâmicos possuem gráficos e se movem no mundo, portando devem possuir atributos
físicos (velocidade, aceleração, colisor…) e métodos para desenho:

class Actor {
public:

void ProcessInput();

void Update();

void Draw();

void Move();

private:
 Vector2 mVelocity;

 Vector2 mAcceleration;

Rect mCollider;

};

Objetos Dinâmicos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Objects Estáticos

13

Objetos estáticos também possuem gráficos, mas não se movem, apesar de que alguns
possuem colisores (chão, plataformas) e outros não (nuvem):

class Actor {
public:

void ProcessInput();

void Update();

void Draw();

void Move();

private:
 Vector2 mVelocity;

 Vector2 mAcceleration;

Rect mCollider;

};

Objetos Dinâmicos Objetos Estáticos

???
???

???

???

???
???

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Game Objects Gatilhos (Triggers)

14

Objetos gatilhos utilizam colisão para chamar um determinado evento no jogo (ex., spawn do
Goomba), mas não possuem gráficos:

class Actor {
public:

void ProcessInput();

void Update();

void Draw();

void Move();

private:
 Vector2 mVelocity;

 Vector2 mAcceleration;

Rect mCollider;

};

Objetos Dinâmicos Objetos Estáticos Gatilhos

Problema: os objetos de jogo geralmente são muito diferentes entre si!

???
???

???

???

???
???

???

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Modelagem de Objetos

15

Existem três técnicas principais para modelor game objects:

‣ Modelo de hierarquia de classes

‣ Modelo de componentes

‣ Modelo híbrido

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Modelo de Hierarquia de Classes
No modelo de hierarquia de classes, o comportamento dos objetos do jogo é definito e
compartilhado utilizando uma hierarquia de classes, com a raíz em um classe base (Actor)

16

Actor

-position : vec2
-Update()

Character

-velocity : Vector2
-collider : Rect
-Move()
-Draw()

Enemy
-Update()

Block
-collider : Rect
-Draw()

Mario
-Jump()

Goomba

-Move()

Koopa

-Move()

SpawnTrigger
-collider : Rect

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Problema do Modelo de Hierarquia de Classes

17

‣ Hierarquia de classes profundas
Alterações em classes base podem quebrar
inesperadamente as classes derivadas.

‣ Reutilização limitada
A herança só permite reutilizar código de
superclasses, não de classes “irmãs".

‣ Dificuldade em componentes dinâmicos
Objetos precisam mudar comportamentos
durante a execução, o que é complicado
com herança pura.

Em geral, objetos em jogos possuem muitas características independentes, o que gera uma
explosão combinatória de classes com uma hierarquia profunda

Actor

-position : vec2
-Update()

Character

-velocity : Vector2
-collider : Rect
-Move()
-Draw()

Enemy
-Update()

Block
-collider : Rect
-Draw()

Mario
-Jump()

Goomba

-Move()

Koopa

-Move()

SpawnTrigger
-collider : Rect

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Modelo de Componentes

18

No modelo de componentes, cada objeto do jogo tem uma lista de componentes que, quando
combinados, definem a sua funcionalidade (Ex., Unity).

Component

- position : vec2
- update()

BoxCollider

- position : Vec2;
- width : float;
- height : float;

RigidBody

- mass : float
- velocity : Vec2;
- acceleration: Vec2;

Animator

- sprites : vector

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Modelo de Componentes

19

No modelo de componentes, cada objeto do jogo tem uma lista de componentes que, quando
combinados, definem a sua funcionalidade (Ex., Unity).

Actor

- components : vector<Component>
- AddComponent(c : Component)
- DelComponent(c: Component)
- Update()

Mario

- Mario () {
AddComponent(BoxCollider(w=5, h=5));
AddComponent(RigidBody(mass=1));
AddComponent(Draw([1,2,3]));

 }

Component

- position : vec2
- update()

SpawnTrigger

- Block () {
AddComponent(BoxCollider(w=10, h=10));

}

Block

- Block () {
AddComponent(BoxCollider(w=5, h=5));
AddComponent(Draw([1]));

 }

BoxCollider

- position : Vec2;
- width : float;
- height : float;

RigidBody

- mass : float
- velocity : Vec2;
- acceleration: Vec2;

Animator

- sprites : vector

A hierarquia dos componentes
também é muito rasa!

A hierarquia do Actor
tem profundidade 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Problemas do Modelo de Componentes

20

Component

- position : vec2
- update()

BoxCollider

- position : Vec2;
- width : float;
- height : float;

RigidBody

- mass : float
- velocity : Vec2;
- acceleration: Vec2;

Animator

- sprites : vector

Em geral, diferentes componentes precisam comunicar entre si, fazendo com que hajam várias
buscas por componentes, prejudicando performance

BoxCollider::CheckHorizontalCollision() {}

BoxCollider::CheckVerticalCollision() {}

BoxCollider::Update(float deltaTime) {

// Get object velocity from RigidBody

RigidBody *body = owner->GetComponent<RigidBody>();

if(Math::Abs(body->GetVelocity().x) > 0)

CheckHorizontalCollision();

}

if(Math::Abs(body->GetVelocity().y) > 0)

CheckVerticalCollision();

}

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Modelo de Objetos Híbrido

21

No modelo híbribo, combinados uma hierarquia de classes com componentes, ou seja, algumas
propriedades/funções são passadas por herança enquanto outras por componentes (Ex. Unreal)

GameObject

- components : vector<Component>
- AddComponent(c : Component)
- DelComponent(c: Component)
- Update()

Character

- Mario () {
AddComponent(BoxCollider(w=5, h=5));
AddComponent(RigidBody(mass=1));
AddComponent(Draw());

 }

SpawnTrigger

- Block () {
AddComponent(BoxCollider(w=10, h=10));

}

Block

- Block () {
AddComponent(BoxCollider(w=5, h=5));
AddComponent(Draw());

 }

Mario Enemy Question Solid

Modelo de Componentes
Todas as funcionalidades do jogo são

implementadas em componentes

Modelo Híbrido
Algumas funcionalidades são
implementadas por componentes,
enquanto outras por métodos/herança

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A7: Física I - Objetos Rígidos
‣ Geometrias de colisão

‣ Falsos Positivos

‣ Detecção de colisão

‣ Circunferência vs. Circunferência

‣ AABB vs. AABB

‣ Resolução de Colisão

‣ AABB vs. AABB

22

