
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A7: Física I - Objetos Rígidos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula

2

‣ Física em Jogos Digitais

‣ Movimentação de Objetos Rígidos

‣ Método de Euler Semi-Implícito

‣ Aceleração da gravidade

‣ Atrito

‣ Resistência do Meio

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Física em Jogos Digitais
O principal uso de física em jogos é mover objetos segundo as leis da mecânica clássica, ou
seja, por meio de forças aplicadas pelo jogador ou por outros objetos do jogo. Por exemplo:

3

‣ Andar e Correr

‣ Pular

‣ Planar (resistência do ar menor)

‣ Deslizar (em morros inclinados)

‣ Vento (atuando em uma direção)

‣ Atrito diferente quando andando no
casco

‣ …

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Objetos Rígidos
Em jogos, geralmente assumimos que os objetos são Objetos Rígidos, ou seja, sólidos que não
sofrem deformação. As propriedades físicas de objetos rígidos são:

4

Apesar de objetos rígidos não existirem na vida real,
são excelentes simplificações para simulações de
objetos em jogos.

‣ Massa (escalar): quantidade de matéria no corpo

‣ Posição (vetor): localização no espaço (2D ou 3D)

‣ Velocidade (vetor): taxa de variação de posição

‣ Acceleração (vetor): taxa de variação de velocidade

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

⃗g

Forças em Objetos Rígidos
Uma força é um vetor que causa um objeto (rígido) a acelerar. Em jogos, múltiplas forças
podem atual em um mesmo objeto ao mesmo tempo (correr , pular , gravidade , …)

⃗fi
⃗r ⃗j ⃗g

5

Segunda Lei de Newton:
Força é igual a massa vezes a aceleração

⃗j
⃗f

⃗f = m ⃗a ⃗a =
⃗f

m

‣ Como temos a aceleração , podemos calcular
a velocidade e a posição do objeto.

‣ Porém não estamos em MUV! Então temos
que usar cálculo (numérico)!

⃗a
⃗v ⃗s

⃗f ⃗f

⃗f

Para considerar múltiplas forças, basta somá-las!

⃗a =
∑ ⃗fi
m

⃗f = ⃗r + ⃗j + ⃗g
⃗j

⃗g

⃗r

⃗r

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Movimentação de Objetos Rígidos: Velocidade

6

dv
dt

≈
v(t + Δt) − v(t)

Δt

v(t + Δt) ≈ v(t) +
dv
dt

⋅ Δt

v(t + Δt) ≈ v(t) + a ⋅ Δt

v′￼ ← v + a ⋅ ΔtRenomeando as variáveis:

Derivada aproximada
considerando dois quadros

consecutivos e :t t + Δt

Isolando :v(t + Δt)

Substituindo :
dv
dt

= a

v(t)
v(t) = v0 + at

dv
dt

= a

Precisamos aproximar a função velocidade e de posição em instantes discretos de
tempo (quadros do jogo), separados por um intervalo de tempo (delta time):

v(t) s(t)
Δt

t
Objetos em jogos possuem aceleração dinâmica,
mas a visualização do caso MRUV é mais simples

Δt

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Movimentação de Objetos Rígidos: Posição

7

ds
dt

≈
s(t + Δt) − s(t)

Δt

s(t + Δt) ≈ s(t) +
ds
dt

⋅ Δt

s(t + Δt) ≈ s(t) + v ⋅ Δt

s′￼ ← s + v ⋅ Δtt

s(t) = s0 + v0t +
at2

2

Δt

ds
dt

= v = v0 + at

Precisamos aproximar a função velocidade e de posição em instantes discretos de
tempo (quadros do jogo), separados por um intervalo de tempo (delta time):

v(t) s(t)
Δt

Renomeando as variáveis:

Derivada aproximada
considerando dois quadros

consecutivos e :t t + Δt

Isolando :s(t + Δt)

Substituindo :
ds
dt

= v

s(t)

Esse método de aproximaçao é
conhecido como Método de Euler!

Objetos em jogos possuem aceleração dinâmica,
mas a visualização do caso MRUV é mais simples

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Método de Euler

8

Existem duas variações básicas do Método de Euler:

‣ Método de Euler Semi-Implícito

1.

2.

⃗v′￼ = ⃗v + ⃗aΔt
⃗s′￼ = ⃗s + ⃗v′￼Δt

‣ Método de Euler Explícito

1.

2.

⃗s′￼ = ⃗s + ⃗vΔt
⃗v′￼ = ⃗v + ⃗aΔt

Mais preciso! Por isso, uma das opções mais comuns
para implementação de objetos rígidos em jogos!

O sistema ganha energia ao longo do tempo!

Primeiro atualiza posição,
depois velocidade

Primeiro atualiza velocidade,
depois posição

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Método de Euler Semi-Implícito

9

‣ O intervalo de tempo define a magnitude
da aceleração

‣ Quanto menor o , melhor a aproximação
do movimento real.

Δt
⃗at

Δt⃗s′￼

⃗vt

⃗at
⃗v′￼

⃗s

⃗v′￼ = ⃗v + ⃗aΔt
⃗s′￼ = ⃗s + ⃗v′￼Δt

 Geometricamente, as curvas dos movimentos contínuos reais são aproximados por uma
sequência de retas:

⃗vt
void Update(const float deltaTime) {

 mVelocity += mAccelaration * dt;
 mPosition += mVelocity * dt;
 mAcceleration.Set(.0, .0);
}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Impacto do tamanho do delta time

10

t0 t

 Quanto menor o , melhor a aproximação do movimento real, ou seja, mais suave será o
movimento.

Δt

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Impacto do tamanho do delta time

11

t0 t
Δt Δt

 Quanto menor o , melhor a aproximação do movimento real, ou seja, mais suave será o
movimento.

Δt

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Impacto do tamanho do delta time

12

t0 t
Δt Δt Δt

 Quanto menor o , melhor a aproximação do movimento real, ou seja, mais suave será o
movimento.

Δt

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Impacto do tamanho do delta time

13

t0 t
Δt Δt Δt Δt

 Quanto menor o , melhor a aproximação do movimento real, ou seja, mais suave será o
movimento.

Δt

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Impacto do tamanho do delta time

14

t0 t

Δt Δt Δt Δt Δt Δt

 Quanto menor o , melhor a aproximação do movimento real, ou seja, mais suave será o
movimento.

Δt

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Impacto na variação do delta time

15

t0 t

Δt Δt Δt Δt Δt Δt

Como mencionados em aulas anteriores, se o delta time for variável entre quadros, a
simulação física pode ficar instável!

Δt

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Implementando Objetos Rígidos
Uma boa forma de implementar Objetos Rígidos é utilizando um componente que pode ser
adicionado à lista de componentes dos objetos que terão movimento do jogo:

16

class RigidBody : public Component
{
public:
 RigidBody(class Actor* owner, float mass);
 void ApplyForce(const Vector2 &force);
 void Update(float deltaTime) override;

private:

 // Physical properties
 float mMass;
 Vector2 mVelocity;
 Vector2 mAcceleration;
};

void ApplyForce(const Vector2 &force) {
 mAcceleration += force * (1.f/mMass);
}

void Update(const float deltaTime) {
 mVelocity += mAccelaration * dt;
 mPosition += mVelocity * dt;
 mAcceleration.Set(.0, .0);
}

https://gist.github.com/lucasnfe/7d1a7afd6a2dee6cc044b8eee700565c

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Aceleração da Gravidade

17

Para implementar uma Força Peso nos objetos, basta aplicar uma força constante para
baixo a cada atualização do componente RigibBody:

⃗g

RigidBody::Update(float dt) {

ApplyForce(mMass * g);

mVelocity += mAccelaration * dt;

mPosition += position * dt;

mAcceleration.Set(0f, 0f);

}

RigidBody::ApplyForce(Vector2 f) {

mAccelaration += f * 1f/mMass;

}

Vector2 g = Vector2(0.f, 9.8f);

⃗g

⃗j

⃗r

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Simulação de Vento

18

De forma similar, para simular uma força causada por vento, que atua nos objetos em uma
determinada direção, basta aplicar uma força constante nessa direção:⃗w

RigidBody::Update(float dt) {

ApplyForce(mMass * g);

ApplyForce(w);

mVelocity += mAccelaration * dt;

mPosition += position * dt;

mAcceleration.Set(0f, 0f);

}

Vector2 g = Vector2(0.f, 9.8f);

Vector2 w = Vector2(-10.0f, 0.0f);

⃗j

⃗f

⃗w

⃗g

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Atrito

19

RigidBody::ApplyFriction(float u, Vector2 N){

if(mVelocity.Length() <= a)

return;

float frictionMag = u * N.Length();

Vector2 friction = (-1) * mVelocity;

friction.Normalize();

friction *= frictionMag;

ApplyForce(friction);

}

⃗v

N

⃗g

⃗F a = − 1μ | |N | | ̂v

‣ : coeficiente de atrito
‣ : é a força normal

μ
N

Para aplicar uma Força de Atrito, podemos calcular o inverso da velocidade normalizada e
multiplicar por um coeficiente de atrito e a magnitude do vetor normal à superfície :μ N

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Resistência do Meio

20

A mesma ideia se aplica para parar um objeto que não está em contato com uma superfície,
mas sobre resistência do meio, como do ar ou de um fluído.

RigidBody::ApplyDrag(float rho){
if(mVelocity.Length() <= MIN_VEL)

return;

float vLen = mVelocity.Length();
float dragLen = rho * vLen * vLen;

Vector2 drag = (-1) * mVelocity;
drag.Normalize();
drag *= dragLen;

ApplyForce(drag);
}

⃗v

⃗F r = −
1
2

ϱ | |v | |2 ACd ̂v

‣ : densidade do meio
‣ : comprimento do vetor velocidade
‣ : área frontal do objeto
‣ : coeficiente de resistência
‣ : direção do vetor velocidade

ϱ
| |v | |2

A
Cd
̂v

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Parando por Completo
Note que a aceleração é zerada a cada quadro, mas e a velocidade não, ou seja, o objeto só irá
parar por completo quando a aceleração cancelar perfeitamente a velocidade atual:

21

RigidBody::Update(float dt) {

ApplyDrag(0.1f);

mVelocity += mAccelaration * dt;

mPosition += position * dt;

mAcceleration.Set(0f, 0f);

} Problemas:

‣ é extremamente improvável devido às
multiplicações por dt e pela natureza de ponto
flutuante das forças

‣ O objeto vai chegar a uma velocidade escalar muito
baixa (ex. 0.001), mas nunca irá parar por completo

⃗v = (0,0)

⃗vt ⃗vt+1 ⃗vt+2 ⃗F r

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Parando por Completo
Note que a aceleração é zerada a cada quadro, mas e a velocidade não, ou seja, o objeto só irá
parar por completo quando a aceleração cancelar perfeitamente a velocidade atual:

22

RigidBody::Update(float dt) {

ApplyDrag(0.1f);

mVelocity += mAccelaration * dt;

// Verificar velocidade mínima

if(mVelocity.Length() < MIN_VEL) {

mVelocity.Set(.0f, .0f);

}

mPosition += position * dt;

mAcceleration.Set(0f, 0f);

}

Solução:

‣ Definir um limiar de velocidade escalar
mínima MIN_VEL

‣ Se a velocidade escalar for menor que esse
limiar, force ela a ser exatamente zero

⃗vt ⃗vt+1 ⃗F r

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Velocidade Máxima
Também é importante definir um limiar de velocidade máxima, para tormar a simulação mais
controlada e evitar comportamentos inesperados (ex. atravesar paredes)

23

⃗vt

Solução:

‣ Definir um limiar de velocidade escalar
máxima MAX_VEL

‣ Se a velocidade escalar for maior que
esse limiar, force ela a ser exatamente
MAX_VEL

RigidBody::Update(float dt) {

mVelocity += mAccelaration * dt;

// Verificar velocidade mínima

...

// Verificar velocidade máxima

if(mVelocity.Length() > MAX_VEL) {

mVelocity.Normalize();

mVelocity *= MAX_VEL;

}

mPosition += position * dt;

mAcceleration.Set(0f, 0f);

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A8: Física II - Detecção de Colisão
‣ Geometrias de colisão

‣ Falsos Positivos

‣ Detecção de colisão

‣ Circunferência vs. Circunferência

‣ AABB vs. AABB

‣ Resolução de Colisão

‣ AABB vs. AABB

24

