
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A8: Física II - Detecção de Colisão

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Logística
Avisos

‣ As notas do TP0: Configuração foram publicadas no SIGA!

‣ Se você tem qualquer questionamento sobre notas, favor entrar em contato comigo, com
copiroa para o monitor

Última Aula

‣ Método de Euler Semi-implícito para movimentação de objetos rígidos

‣ Calcular a velocidade e posição a partir da aceleração

‣ A aceleração é a soma das forças atuantes divido pela massa:

⃗v ⃗s ⃗a

⃗a =
∑ ⃗fi
m

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula

3

‣ Geometrias de colisão

‣ Falsos Positivos

‣ Detecção de colisão

‣ Circunferência vs. Circunferência

‣ AABB vs. AABB

‣ Resolução de Colisão

‣ AABB vs. AABB

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Detecção de Colisão (entre dois objetos)
O problema de detecção de colisão envolve verificar de dois objetos do jogo estão colidindo
entre si em um dado quadro do jogo:

4

Quadro t Frame t + 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Geometrias de Colisão
A primeira etapa de um algoritmo de detecção de colisão é definir uma geometria de colisão
para representar os corpos dos objeto do jogo. Algumas das geometrias mais usadas são:

5

Circunferência Caixa Cápsula Polígonos Convexos

Em ordem de complexidade, as geometrias mais comuns para detecção
de colisão são: circunferência, caixa, cápsula e polígonos convexos.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Geometrias de Colisão
Normalmente, escolhemos a geometria mais simples que melhor aproxima a representação
visual do objeto.

6

Circunferência Caixa Cápsula Polígonos Convexos

Da esquerda para a direita, exemplos de circunferência, caixa, cápsula
e polígono convexo como geometria de colisão de um asteroide.

C

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Circunferência
A circunferência é a geometria mais simples para detecção de colisão: ela é definida por um
centro (ponto) e um raio

7

A circunferência aproxima bem o
asteroide, mas não a nave

centro

raio

A circunferência é definida por um
centro (ponto) e um raio.

class Circle {
Vector2 center;
float radius;

}

+y

+x

+y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Falsos Positivos
Escolher geometrias de colisão inapropriadas pode gerar falsos positivos. Ou seja, uma colisão
pode ser detectada quando os objetos não estão colidindo visualmente.

8

Verdadeiro Positivo Falso Positivo

+x

+y

+x

+y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Caixa Delimitadora Alinhada com os Eixos
Uma caixa delimitadora alinhada com os eixos, do inglês, axis-aligned bounding box (AABB) é
um retângulo com arestas paralelas aos eixos e .x y

9

min

max

min

max

Quando o objeto é rotacionado, a AABB
se mantém alinhada com os eixos

AABBs podem ser representadas por
dois vértices: mínimo e máximo.

class AABB {
Vector2 min;
Vector2 max;

}

+x

+y

+x

+y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Caixa Delimitadora Orientada
Uma caixa delimitadora orientada, do inglês, oriented bounding box (OBB) é um retângulo sem
a restrição de alinhamento com os eixos, ou seja, que pode rotacionar.

10

A

OBBs podem ser representadas por quatro
vértices e um ângulo.

B

D

C

A B

DC

Quando o objeto é rotacionado, a
OBB também é rotacionada.

A

B

D

C

A B

DC

class OBB {
Vector2 a,b,c,d;
float theta;

}

+x

+y

+x

+y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Cápsulas
Cápsulas são muito utilizadas como geometrias de personagens humanoides, pois
representam melhor o corpo humano e facilitam a detecção de colisão com rampas e escadas.

11

Cápsulas podem ser representadas por dois pontos e um raio.

start

end

radius

radius

class Capsule {
Vector2 start;
Vector2 end;
float radius;

}

+x

+y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Polígonos Convexos
Polígonos convexos são geometrias mais flexíveis, possibilitando um melhor ajuste ao corpo
real do objeto, porém a detecção de colisão com eles é mais complexa.

12

Polígonos convexos podem ser representados por um arranjo
unidimensional de vértices.n

class ConvexPolygon {
vector<Vector2> vertices;

}

+x

+y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Lista de Geometrias
A representação do corpo de um objeto não precisa se limitar a uma única geometria. Podemos
utilizar uma lista de geometrias para uma melhor aproximação.

13

Precisamos definir uma classe base Geometry para
agrupar todas as geometrias em uma lista.

class ListCollider {
vector<Geometry> geometries;

}

+x

+y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Detecção de Colisão
A escolha de geometria para representação dos corpos dos objetos do jogo define os algorimos
de detecção de colisão que serão utilizados. Um algoritmo diferente é definido para cada par de
geometrias, por exemplo:

14

Circunferência vs.
Circunferência AABB vs. AABB Circunferência vs. AABB Polígono vs. Polígono

(convexos)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Circunferência vs. Circunferência
Duas circunferências estão colidindo quando a distância entre seus centros for menor do que
soma dos seus raios.

15

A
rA

rB

B

| |A − B | | < (ra + rb)

A
rA

B

rB

| |A − B | | > (ra + rb)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Circunferência vs. Circunferência
Duas circunferências estão colidindo quando a distância entre seus centros for menor do que
soma dos seus raios.

16

A
rA

B

rB

⃗d

⃗d ⋅ ⃗d > (ra + rb)(ra + rb)

‣ Na prática, para evitar o cálculo de raizes
quadradas, comparamos o quadrado da
distância entre os centos com o quadrado
da soma dos raios

‣ O quadrado da distância entre os centros
pode ser calculado pelo produto escalar
do vetor com ele mesmo: ⃗d = B − A

⃗d ⋅ ⃗d = dx ⋅ dx + dy ⋅ dy + dz ⋅ dz

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

AABB vs. AABB
Para detectar a colisão entre AABBs, é mais fácil verificar os casos em que elas não estão
colidindo. Se todos esses testes derem falso, elas estão colidindo.

17

A

A.min

A.max
B

B.min

B.max

1. A à esquerda de B
 A.max.x < B.min.x

A

A.min

A.max

B

B.min

B.max

2. B à esquerda de A
 B.max.x < A.min.x

A

A.min

A.max

B

B.min

B.max

4. B em cima de A
 B.max.y < A.min.y

B

B.min

B.max

A

A.min

A.max

2. A em cima de B
 A.max.y < B.min.y

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Polígonos Convexos vs. Polígonos Convexos
O algoritmo de verificação de colisão entre polígonos convexos é uma generalização do
algoritmo AABB vs. AABB, que chamamos de Separation Axis Theorem

18

O Separation Axis Theorem afirma que dois
polígonos convexos não colidem se, e somente se,
existe pelo menos um eixo onde as projeções
ortogonais dos polígonos nesse eixo não se cruzam.

‣ Em outras palavras, se existe uma reta que separa
os dois polígos, eles não colidem.

‣ Como encontrar essa reta? Ou melhor, quais são as
potenciais retas que poderíamos testar?

Eixo de
Separação

A

B

A.max

A.min

B.max

B.min

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Polígonos Convexos vs. Polígonos Convexos
O Separation Axis Theorem nos garante que é suficiente testar apenas os eixos definidos pelos
vetores normais aos lados dos dois polígonos.

19

A

B

Sendo assim, podemos usar o seguinte algoritmo para verificar
colisão entre dois polígonos convexos:

1. Para cada polígono
2. Para cada aresta :

3. Calcule a normal a essa aresta

4. Projete todos os vértices no eixo definido por

5. Encontre os vértices e

6. Projete todos os vértices no eixo definido por

7. Encontre os vértices e

8. Se ou , não houve colisão!

9. Se nenhum eixo foi encontrado, houve colisão!

P ∈ {A, B}
ei ∈ P

⃗n ei
aj ∈ A ⃗n

amin ∈ A amax ∈ A
bk ∈ B ⃗n

bmin ∈ B bmax ∈ B

amax < bmin bmax < amin

A.max

A.min

B.max

B.min

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Broad Phase vs Narrow Phase
Em jogos 3D, ou jogos 2D onde as representações dos objetos precisam ser mais precisas,
geralmente a verificação de colisão é feita em duas etapas:

20

1. Broad Phase
Usar geometrias de colisões muito simples
para detectar rapidamente objetos em
potencial colisão;

2. Narrow Phase
Usar geometrias de colisões precisas, que
aproximam melhor o corpo visual do objeto,
visando detectar se colisões realmente
ocorreram.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Resolução de Colisão
A resolução de uma colisão depende de decisões de design do jogo.

21

‣ O caso mais simples é quanto os dois
objetos são destruídos após a colisão

‣ Quando os objetos não são destruídos, tipicamente
é necessário separar as duas geometrias:

Ex: Asteroids
Colisão entre a nave e os meteoros

Ex: Super Mario Bros
Colisão entre o Mario e as plataformas

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Resolução de Colisão: Separação de AABBs
A resolução de colisão entre AABBs é geralmente realizada separadamente por eixo (horizontal
e vertical), pois, em um mesmo quadro, podem haver colisões nos dois eixos:

22

B

B.min

B.max

dt db

A

A.min

A.max

1. Descobrir qual lado de colidiu com

Basta calcular os vetores entre os lados de
e seus respectivos lados opostos em :

 = (0, A.min.y - B.max.y) cima
 = (0, A.max.y - B.min.y) baixo

2. Separar de após uma colisão:

Basta somar à posição de o vetor de menor
comprimento entre e .

B A
A

B

dt →
db →

A B
B

dt db

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Resolução de Colisão: Separação de AABBs

23

1. Descobrir qual lado de colidiu com

Basta calcular os vetores entre os lados de
e seus respectivos lados opostos em :

 = (A.min.x - B.max.x, 0) esquerda
 = (A.max.x - B.min.x, 0) direita

2. Separar de após uma colisão:

Basta somar à posição de o vetor de menor
comprimento entre e .

B A
A

B

dl →
dr →

A B
B

dt db

B

B.min

B.max

A

A.min

A.max

dr
dl

A resolução de colisão entre AABBs é geralmente realizada separadamente por eixo (horizontal
e vertical), pois, em um mesmo quadro, podem haver colisões nos dois eixos:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Detecção de Colisão (entre múltiplos objetos)
Agora que sabemos algumas técnicas simples para detecção e resolução de colisão, vamos
considerar o caso geral onde um objeto pode colidir contra vários objetos:

24

‣ O algoritmo mais simples consiste em verificar
colisão de todos contras todos:

for (auto objA : mObjetos)
for (auto objB : mObjetos)

if objA != objB

checkCollision(objA, objB)

Esse algoritmo é , onde é o número de
objetos em cena. Funciona bem se a cena não tiver
muitos objetos, como no Asteroids!

O(n2) n

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Detecção de Colisão (entre múltiplos objetos)
A vantagem de se implementar uma engine é que podemos otimizar o jogo com base em suas
regras. Por exemplo, no Asteroids, os meteoros não colidem entre si, portanto:

25

‣ O algoritmo se resume a verificar a colisão entre a
nave vs. meteoros e tiros vs. meteoros:

for (auto meteor : mMeteors):
checkCollision(ship, meteor)

for (auto bullet :mBullets)
for (auto meteor : mMeteors)

checkCollision(bullet, meteor)

Esse algoritmo é , onde é o número de
meteoros e o número de tiros.

O(nm) n
m

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Implementando Detecção de Colisão
Uma boa forma de implementar detecção de colisão é utilizando um componente que pode ser
adicionado à lista de componentes dos objetos que terão colisão do jogo:

26

class BoxCollider : public Component
{
public:
 BoxCollider(Actor* owner, Rect rect);
 void DetectHCol();
 void DetectVCol();

float GetMinVOverlap(BoxCollider* b);
float GetMinHOverlap(BoxCollider* b);

bool Intersect(const BoxCollider& b);

private:
 Vector2 mOffset;
 Vector2 mSize;
};

void DetectVCol(BoxCollider *body) {
// Similar a função acima

}

void DetectHCol() {
// Get otherColliders from game
for (auto b : otherColliders) {

if(Intersect(b)) {
float minHOverlap = GetMinHOverlap(b);
ResolveHCol(minHOverlap);
// Throw event to owner
mOwner->OnHCollision(minHOverlap, b);

 }
}

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A9: Física III - Otimizações de Detecção de Colisão
‣ Sort and Sweep

‣ Estruturas de Dados Espaciais

‣ Hashing Espacial

‣ Quadtree/Octree

‣ Culling de Região Ativa

27

