DCC192 CEIG

2025/7

Desenvolvimento de Jogos Digitais
Agd: Fisica ll - Deteccao de Colisao

Prof. Lucas N. Ferreira

Logistica L
Avisos

» Asnotas do TPO: Configuracao foram publicadas no SIGA!

p Sevoce tem qualquer guestionamento sobre notas, favor entrar em contato comigo, com
copiroa para o monitor

Ultima Aula

» Método de Euler Semi-implicito para movimentacao de objetos rigidos

» Calcularavelocidade v e posicao s a partir da aceleracao a

|

2/

m

» Aaceleragao e asoma das forcas atuantes divido pela massa: a =

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Plano de Aula

» Geometrias de colisao
» Falsos Positivos

» Deteccao de colisao
» Circunferénciavs. Circunferéncia
» AABB vs. AABB

» Resolucao de Colisao

» AABB vs. AABB

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Deteccao de Colisdo (entre dois objetos) u

O problema de deteccao de colisao envolve verificar de dois objetos do jogo estao colidindo
entre si em um dado quadro do jogo:

J

Quadrot Framet + 1

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Geometrias de Colisao i

A primeira etapa de um algoritmo de deteccao de colisao é definir uma geometria de colisao
para representar os corpos dos objeto do jogo. Algumas das geometrias mais usadas sao:

Circunferéncia Caixa Capsula Poligonos Convexos

Em ordem de complexidade, as geometrias mais comuns para deteccao
de colisao sao: circunferéncia, caixa, capsula e poligonos convexos.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Geometrias de Colisao i

Normalmente, escolhemos a geometria mais simples que melhor aproxima a representacao
visual do objeto.

& 4

Circunferéncia Caixa Capsula Poligonos Convexos

Da esquerda para a direita, exemplos de circunferéncia, caixa, capsula
e poligono convexo como geometria de colisao de um asteroide.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Circunferéncia i

A circunferéncia € a geometria mais simples para deteccao de colisao: ela é definida por um
centro(ponto)e um raio

class Circle {
Vector? center;
float radius;

J

A circunferéncia e definida por um A circunferéncia aproxima bem o
centro(ponto)e um raio. asteroide, mas nao a nave

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Falsos Positivos i

- scolher geometrias de colisao inapropriadas pode gerar falsos positivos. Ou seja, uma colisao
pode ser detectada quando os objetos nao estao colidindo visualmente.

Verdadeiro Positivo Falso Positivo

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Caixa Delimitadora Alinhada com os Eixos i

Uma caixa delimitadora alinhada com os eixos, do inglés, axis-aligned bounding box (AABB) &
um retangulo com arestas paralelas aos eixosx e y.

MaxXx

class AABB {
Vector”?2 min;
Vector’/ max;

J

AABBs podem ser representadas por Quando o objeto é rotacionado, a AABB
dois vertices: minimo e maximo. se mantém alinhada com os eixos

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Caixa Delimitadora Orientada i

Uma caixa delimitadora orientada, do inglés, oriented bounding box (0BB) ¢ um retangulo sem
a restricao de alinhamento com 0s eixos, ou seja, que pode rotacionar.

B

class OBB {
VectorZ2 a,b,c,d;
float theta;

J

O0BBs podem ser representadas por quatro Quando o objeto é rotacionado, a
vertices e um anqgulo. OBB tambem € rotacionada.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 10

Capsulas i

Capsulas sao muito utilizadas como geometrias de personagens humanoides, pois
representam melhor o corpo humano e facilitam a deteccao de colisao com rampas e escadas.

class Capsule {
Vector”Z2 start;
Vector?2 end;

. float radius;
radius }

i]

Capsulas podem ser representadas por dois pontos e um raio.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 11

Poligonos Convexos i

Poligonos convexos sao geometrias mais flexiveis, possibilitando um melhor ajuste ao corpo
real do objeto, porem a deteccao de colisao com eles € mais complexa.

class ConvexPolygon {
vector<VectorZ> vertilices;

J

]

Poligonos convexos podem ser representados por um arranjo
unidimensional de n vértices.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

12

Lista de Geometrias i

A representacao do corpo de um objeto nao precisa se limitar a uma unica geometria. Podemos
utilizar uma lista de geometrias para uma melhor aproximacao.

class ListCollider {
vector<Geometry> geometries;

}
O

]

Precisamos definir uma classe base Geometry para
agrupar todas as geometrias em uma lista.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

15

Deteccao de Colisao 11

A escolha de geometria para representacao dos corpos dos objetos do jogo define os algorimos

de C

eteccao de colisao que serao utilizados. Um algoritmo diferente € definido para cada par de

geo

metrias, por exemplo:

QW & <

Circunferéncia vs.

. N AABB vs. AABB Circunferénciavs. AABB Poligono vs. Poligono
Circunferéncia

(convexos)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 14

Circunferéncia vs. Circunferéncia i

Duas circunferéncias estao colidindo quando a distancia entre seus centros for menor do que
SO0ma dos seus raios.

A
A~~
~~~~~~~~~ "
B
[|A—=B|| <(r,+r,) [|A—=B|| > (r,+r1,)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

15



Circunferéncia vs. Circunferéncia 11

Duas circunferéncias estao colidindo quando a distancia entre seus centros for menor do que
Soma dos seus raios.

» Na pratica, para evitar o calculo de raizes

guadradas, comparamos 0 quadrado da

distancia entre os centos com o quadrado

da soma dos ralos A

r
B
» O quadrado da distancia entre os centros d\

pode ser calculado pelo produto escalar
dovetord = B — A com ele mesmo:

- -

d-d=d,-d,+d,-d,+d,-d,
d-d> (r,+r)r,+r,)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira



AABB vs. AABB I

Para detectar a colisao entre AABBs, &€ mais facil verificar os casos em gue elas nao estao
colidindo. Se todos esses testes derem falso, elas estao colidindo.

B.min
A.min
A.min . . B
B.min B.min A.min A
A
A
B B A.max B.max
A.max B.min A.min
A.max
B.max B.max
A
B
1. AaesquerdadeB 2. B aesquerdade A
A.max.x < B.min.x B.max.x < A.min.x A.max
B.max
2. AemcimadeB 4.Bemcimade A
A.max.y < B.min.y B.max.y < A.min.y

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 17



Poligonos Convexos vs. Poligonos Convexos i

O algoritmo de verificacao de colisao entre poligonos convexos € uma generalizacao do
algoritmo AABB vs. AABB, gue chamamos de Separation Axis Theorem

nar . . : .
. J Separation Axis Theorem afirma que dois

=0 de Doligonos convexos nao colidem se, e somente se,
Separacio existe pelo menos um eixo onde as projecoes
ortogonais dos poligonos nesse eixo Nao se cruzam.

AN

» Em outras palavras, se existe umareta que separa
B.max os dois poligos, eles ndo colidem.

» Como encontrar essa reta? Ou melhor, quais sao as
g.min potenciais retas que poderiamos testar?

DCC192 - 2025/2 - Prof. Lucas N. Ferreira



Poligonos Convexos vs. Poligonos Convexos L

O Separation Axis Theorem nos garante que é suficiente testar apenas os eixos definidos pelos
vetores normais aos lados dos dois poligonos.

Sendo assim, podemos usar o seguinte algoritmo para verificar
p.rnax colisao entre dois poligonos convexos:

Para cada poligono P € {A, B}
Para cada arestae; € P:

A.MIN Calcule a normal i a essa aresta e;

5. max Projete todos os veértices a; € A no eixo definido por n

Encontre os vérticesa,,., € Aea,, €A

Projete todos os vértices b, € B no eixo definido por n

N o o RN o=

o min Encontre os vérticesb, .. € Beb, .. € B

-~ [ ~ I
Sea,,, <b, . oub, .<a,., ndohouve colisdo

min’

©

Se nenhum eixo foi encontrado, houve colisdo!

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 19



Broad Phase vs Narrow Phase i

-m jogos 30, ou jogos 2D onde as representacoes dos objetos precisam ser mais precisas,
geralmente a verificacao de colisao e feita em duas etapas:

1. Broad Phase

Usar geometrias de colisoes muito simples
para detectar rapidamente objetos em
potencial colisao;

2. Narrow Phase

Usar geometrias de colisoes precisas, que
aproximam melhor o corpo visual do objeto,

visando detectar se colisoes realmente
ocorreram.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

20



Resolucéao de Colisao 11

A resolucao de uma colisao depende de decisoes de design do jogo.

» O caso mais simples & quanto os dois » Quando os objetos nao sao destruidos, tipicamente
objetos sao destruidos apos a colisao e necessario separar as duas geometrias:

Ex: Super Mario Bros
Colisao entre o Mario e as plataformas

Ex: Asteroids
Colisao entre a nave e o0s meteoros

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

21



Resolucao de Colisdo: Separacao de AABBs i

A resolucao de colisao entre AABBs € geralmente realizada separadamente por eixo (horizontal
e vertical), pois, em um mesmo quadro, podem haver colisdoes nos dois eixos:

B.mi
1. Descobrir qual lado de B colidiucom A min

Basta calcular os vetores entre os lados de A
e seus respectivos lados opostos em B:

d,= (0, A.min.y - B.max.y) = cima
d, =(0, A.max.y - B.min.y) = baixo

A.min

2. SepararA de B apds uma colisao:

Basta somar a posicao de B o vetor de menor
comprimento entred, e d,,

B.max

A.max

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

22



Resolucao de Colisdo: Separacao de AABBs i

A resolucao de colisao entre AABBs € geralmente realizada separadamente por eixo (horizontal
e vertical), pois, em um mesmo quadro, podem haver colisdoes nos dois eixos:

B.mi
1. Descobrir qual lado de B colidiucom A min

Basta calcular os vetores entre os lados de A

e seus respectivos lados opostos em B: d
< .............
d;=(A.min.x - B.max.x, 0) — esquerda -
mMin
d.=(A.max.x - B.min.x, 0) — direita
A

2. Separar A de B ap6s uma colisao:

Basta somar @ posicdo de B o vetor de menor
comprimento entre d, e d,,

B.max

A.max
DCC192 - 2025/2 - Prof. Lucas N. Ferreira 23



Deteccao de Colisdo (entre multiplos objetos) i

Agora que sabemos algumas tecnicas simp

considerar o caso geral onde um objeto poc

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

es para deteccao e resolucao de colisao, vamos
e colidir contra varios objetos:

» O algoritmo mais simples consiste em verificar

colisao de todos contras todos:

for (auto objA : mObjetos)
for (auto objyJB : mObjetos)
1f objJA !'= 0bjB
checkCollision (objJA, ©bjB)

Esse algoritmo é O(n?), onde 1 é o numero de
objetos em cena. Funciona bem se a cena nao tiver
muitos objetos, como no Asteroids!

24



Deteccao de Colisdo (entre multiplos objetos) i

A vantagem de se implementar uma engine é que podemos otimizar 0 jJogo com base em suas
regras. Por exemplo, no Asteroids, os meteoros nao colidem entre si, portanto:

» O algoritmo se resume a verificar a colisao entre a
nave vs. meteoros e tiros vs. meteoros:

for (auto meteor : mMeteors) :

checkCollision(ship, meteor)

for (auto bullet :mBullets)

for (auto meteor : mMeteors)

checkCollision(bullet, meteor)

Esse algoritmo ¢ O(nm), onde n € o niumero de
meteoros e m o numero de tiros.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 25



Implementando Detecc¢ao de Colisao

Uma boa forma de implementar deteccao de colisao e utilizando um componente que pode ser
adicionado a lista de componentes dos objetos que terao colisao do jogo:

class BoxCollider : public Component void DetectHCol() {

{ // Get otherColliders from game
public: for (auto b : otherColliders) {
BoxCollider (Actor* owner, Rect rect); 1f(Intersect(b)) {
void DetectHCol(); float minHOverlap = GetMinHOverlap(b);
void DetectVCol(); ResolveHCol (minHOverlap);
// Throw event to owner

float GetMinVOverlap(BoxCollider* b); mOwner->0OnHCollision(minHOverlap, b);
float GetMinHOverlap(BoxCollider* b);

bool Intersect(const BoxCollideré& b);

private:

Vector?2 ; void DetectVCol (BoxCollider *body) {
Vector2 ; // Similar a funcado acima

}i }

DCC192 - 2025/2 - Prof. Lucas N. Ferreira




13

Proxima aula

A9: Fisica lll - Otimizacoes de Deteccao de Colisao

» Sortand Sweep

» Estruturas de Dados Espaciais

» Hashing Espacial
» (Quadtree/Octree

» Culling de Regiao Ativa

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 27



