
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A11: Gráficos 2D

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Logística
Avisos

‣ O TP2: Asteroids será disponibilizado até amanhã!

Última Aula

‣ Sistemas de Partículas

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula

3

‣ Sprites e Spritesheets

‣ Mapeamento de Texturas em OpenGL

‣ Coordenadas uv

‣ Animações 2D

‣ Desenhando Mapas

‣ Tileset

‣ Composição Manual

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Sprites
Um sprite é uma imagem utilizada para representar um estado (ou pose) de um objeto do jogo
visualmente em 2D. Um sprite é definido por:

4

‣ Textura: arranjo bidimensional com os pixels
que formam o sprite

- Por exemplo: mario_idle.png

‣ Posição: local de desenho na tela

- Por exemplo: (100,100)

‣ Ordem de desenho: define qual sprite é
desenhado primeiro

- Por exemplo: 99

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Desenhando sprites em OpenGL
Para desenhar sprites com OpenGL, teremos que enviar a textura do sprite para GPU e amostrar
corres dela usando o Fragment Shader. Isso envolve 4 etapas:

5

1. Carregar um arquivo de textura em memória principal

2. Enviar essa textura para a GPU

3. Adicionar atributos aos vértices dos modelos
mapeando as coordenadas dos vértices à
coordenadas da textura

‣ Esses atributos serão enviados para a GPU junto
com o array de vértices

4. Modificar o Fragment Shader para definir a cor dos
fragmentos por amostras da textura

uv

uv

https://gist.github.com/lucasnfe/239e6aeedc1200b24358e184096b5c9c

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Carregando Texturas com SDL
A SDL possui uma bilioteca auxiliar, SDL_Image.h, para carregar e manipular texturas:

6

if (IMG_Init(IMG_INIT_PNG) == 0) {
 SDL_Log("Unable to initialize SDL_image: %s", SDL_GetError());
 return false;
}

1. Inicializar a SDL_Image:

SDL_Surface* surf = IMG_Load(“mario.png”);
if (!surf) {
 SDL_Log("Failed to load texture file %s", texturePath.c_str());
 return nullptr;
}

2. Usar a função IMG_Load para carregar uma textura do disco:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Enviar Textura para a GPU
Com a textura carregada em memória s, podemos enviá-la para a GPU em duas etapas :

7

GLuint textureID;
glGenTextures(1, &textureID); // Cria textura na GPU
glBindTexture(GL_TEXTURE_2D, textureID); // Linka a textura para configuração
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, s->w, s->h, 0, GL_BGRA, GL_UNSIGNED_BYTE, s->pixels);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

1. Alocar um bloco memória de textura na GPU e transferir os dados da RAM para lá:

2. Configura parâmetros da textura (ex., filtro de maximização e minimização)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Mapeando Vértices às Coordenadas de Texturas
Em OpenGL, as texturas possuem um espaço de coordenadas normalizado e, para cada
vértice do modelo, temos que definir qual coordenada será mapeado para aquele vértice:

(u, v)
(u, v)

8

(0,0) (1,0)

(0,1) (1,1)

u

v

(0.5,0.5)

(0.5, − 0.5)

Textura
Modelo a ser texturizado

(vértices definidos no sistema de
coordenadas do objeto)

(−0.5, − 0.5)

(−0.5,0.5)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Amostrando Cores de Texturas

9

Com a textura carregada e ativa em GPU, podemos criar uma variável uniform no fragment
shader para amostrar cores dessa textura:

in vec2 TexCoord; // Coordenada de textura do vértice, passada via vertex shader
out vec4 outColor;
uniform sampler2D uTexture;
void main() {
 outColor = texture(uTexture, TexCoord);
}

GLint uTexture = glGetUniformLocation(shaderProgram, "uTexture");
glUniform1i(uTexture, 0); // Altera valor da variável para a região de textura 0

1. A função texture() da GLSL nos permite amostrar uma cor de uma textura passando uma coord.:

2. Alterar valor da variável uTexture para 0, que é a unidade que carregamos a nossa textura:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Amostrando Cores de Texturas

10

Com a textura carregada e ativa em GPU, podemos criar uma variável uniform no fragment
shader para amostrar cores dessa textura:

3. Por último, temos que ativar a unidade de textura desejada e linkar a textura no pipeline gráfico pelo
seu ID:

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, textureID);

Se tivermos mais de uma textura carregada (ex. Múltiplos sprite sheets), essas chamadas de ativação e
link deverão ser feitas antes de cada chamada glDrawElements para ativar a textura desejada.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Desenhando Sprites
Sprites são normalmente desenhados seguindo o algoritmo do pintor: manter uma lista
ordenada de sprites e desenhá-la de trás pra frente.

11

SortedList spriteList;

// When creating a new sprite...
Sprite newSprite = new Sprite(“img.png”);
newSprite->SetPosition(Vector2(10, 10));
newSprite->SetDrawOrder();

// Add to sorted list based on draw order value
spriteList.Add(newSprite->GetDrawOrder(), newSprite)

// When it's time to draw...
for (Sprite *s : spriteList)

s->Draw()

1 2

3 4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Animando Sprites
Para criar animações usando sprites, uma série de imagens estáticas reproduzidas em rápida
sucessão para criar uma ilusão de movimento.

12

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Animando Sprites
Para criar animações usando sprites, uma série de imagens estáticas reproduzidas em rápida
sucessão para criar uma ilusão de movimento.

13

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Armazenando Sprites
Armazenar sprites em arquivos separados pode acabar desperdiçando muita memória e
processamento (considerando sprites com imagens de tamanhos iguais).

14

idle.png run1.png run2.png run3.png

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Sprite Sheets
Para otimizar o espaço de armazenamento, geralmente agrupamos os sprites do jogo em um
único imagem maior chamada de Sprite Sheet.

15

(0,0)

{x: 64, y: 0, w: 32, h: 32}

{x: 32, y: 128, w: 32, h: 32}

256

256

Historicamente, sprite sheets são criados em imagens com
tamanho em potência de 2, por restrições das GPUs

‣ A imagem do sprite sheet deve ser
acompanhada de um arquivo auxiliar (ex. json)
que lista a posição e tamanho de cada sprite:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Sprite Sheets
Opcionalmente, podemos criar um sprite sheet para cada personagem, facilitando a indexação
de sprites e execução de animações.

16

(0,0)

128

128

Dividir os sprites em múltiplos sprite sheets pode ser
necessário dependendo da quantidade de sprites

128

32

64

128

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Criando Sprite Sheets
Existem vários editores que auxiliam a criação de Sprite Sheets de maneira automática semi-
automática:

‣ Texture Packer
https://www.codeandweb.com/texturepacker

‣ Free Texture Packer
https://free-tex-packer.com/

‣ Piskel
https://www.piskelapp.com/p/create/sprite

‣ Aseprite
https://www.aseprite.org/

17

https://www.codeandweb.com/texturepacker
https://free-tex-packer.com/
https://www.piskelapp.com/p/create/sprite
https://www.aseprite.org/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Representando Animações
Manter uma lista de imagens com todos os quadros de um personagem:

18

0 1 2 3 4 5 6 7 8

Manter um mapa com os indices dos quadros de cada animação do personagem:

“Idle" [0]
“Jump" [1]
“Run” [2, 3, 4]

“Stomp” [5, 6]
“Turn” [7]
“Dead" [8]

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Tocando Animações
Não podemos assumir que a taxa de quadros da animação seja mais lenta que a taxa de
quadros do jogo:

‣ FPS do Jogo: 30

‣ FPS de uma animação com 24 quadros: 48

Isso significa que muitas vezes precisaremos pular quadros na animação:

19

0 1 2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Tocando Animações
Precisamos de dois floats para tocar uma animação:

‣ mCurrFrame, para armazenar o tempo corrente da animação

‣ mAnimFPS, para amazenar a taxa de atualização da animação

Transformar (cast) mCurrFrame para inteiro para acessar o índice da animação

20

// Atualiza quadro corrente em função do FPS da animação
mCurrFrame += mAnimFPS * deltaTime;

// Manter o quadro corrente dentro dos limites da animação
while (mCurrFrame >= mAnimTextures[mAnimName].size()) {
mCurrFrame -= mAnimTextures.size();

}

SetTexture(mAnimTextures[static_cast<int>(mCurrFrame)]);

0 1 2 3 4 5 6 7 8

mAnimName: ”Run”

mAnimTextures

“Idle" [0]
“Jump" [1]
“Run” [2, 3, 4]

“Stomp” [5, 6]
“Turn” [7]
“Dead" [8]

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Desenhando Mapas
Até agora, vimos como desenhar os objetos dinâmicos por meio de animações via spritesheets,
mas e o mapa do jogo, ou seja, os objetos estáticos que definem o ambiente do jogo?

21

Tilemaps
Por uma questão de otimização, Jogos 2D antigos,
organizavam o mapa em uma estrutura de grade com células
de mesmo tamanho.

Essas células podem ter formatos diferentes:

‣ Quadrados

‣ Hexagonais

‣ Isométricos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Desenhando Mapas
Até agora, vimos como desenhar os objetos dinâmicos por meio de animações via spritesheets,
mas e o mapa do jogo, ou seja, os objetos estáticos que definem o ambiente do jogo?

22

Tilemaps
Por uma questão de otimização, Jogos 2D antigos,
organizavam o mapa em uma estrutura de grade com células
de mesmo tamanho.

Essas células podem ter formatos diferentes:

‣ Quadrados

‣ Hexagonais

‣ Isométricos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Desenhando Mapas
Até agora, vimos como desenhar os objetos dinâmicos por meio de animações via spritesheets,
mas e o mapa do jogo, ou seja, os objetos estáticos que definem o ambiente do jogo?

23

Tilemaps
Por uma questão de otimização, Jogos 2D antigos,
organizavam o mapa em uma estrutura de grade com células
de mesmo tamanho.

Essas células podem ter formatos diferentes:

‣ Quadrados

‣ Hexagonais

‣ Isométricos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Tilemaps
Tilemaps são uma forma de organizar o mundo do jogo em uma grade de células de tamanhos
iguais, cada um com número identificador, visando maximizar a repetição de sprites.

24

- -

- -

- -

- -

- -

- C - - - - - - - - - - -

- -

- -

- -

- - - - - - - - - - - - - - - - C - - - - B C B C B - - - - - - - - -

- -

- F G - - - -

- H I - - - -

A A

A A

A estrutura de grade dos tilemaps
facilita a editação de níveis, pois a
posição dos tiles é limitado a
coordenadas discretas.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Criando Tilemaps
Existem vários editores que auxiliam a criação de Tilemaps. Além de faciliar a criação dos mapas
em si, eles geralmente possibilitam a definição de colisores estáticos, triggers, entre outros:

‣ Tiled
https://www.mapeditor.org/

‣ Sprite Fusion
https://www.spritefusion.com/

‣ PixLab 2D Tilemap Maker
https://tilemap.pixlab.io/

25

https://www.mapeditor.org/
https://www.spritefusion.com/
https://tilemap.pixlab.io/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Desenhando Mapas
Os jogos 2D modernos não têm mais a mesma limitação de recursos computacionais que os
jogos antigos, por isso eles podem desenhar cenas mais detalhadas:

26

Composição Manual
Na composição manual, cada objeto do mapa é posicionado
manualmente, sem restrições de posição.

‣ As camadas do mapa, backgrounds, midgrounds, e
foregrounds, são compostas por grandes imagens.

‣ Plataformas e paredes são dispostas como blocos
desenhados à mão, não como células de uma grade.

‣ Isso dá ao jogo uma estética mais fluida e orgânico, em vez
de repetições em blocos.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A12: Câmeras 2D
‣ Representação de Câmeras 2D

‣ Movimentação de Câmeras 2D

‣ Suavização de Movimento

‣ Efeitos de câmeras 2D

‣ Paralaxe

‣ Chacoalhão (Shake)

27

