
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A15: Interface com o usuário

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Logística
Avisos

‣ O TP3: Super Mario Bros será disponibilizado entre hoje e amanhã

Última Aula

‣ Game Design

‣ Level Design

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de aula
‣ Sistemas de Menus

‣ Menu Principal

‣ Menu de Pausa

‣ Botões e Fontes

‣ Gerenciamento de Cenas

‣ Máquinas de Estados Finitos

‣ Swtich/Case

‣ Padrão de Projeto State

‣ Efeitos de Transição

3

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Menu Principal
O Menu Principal é a primeira tela que um jogador vê ao iniciar um jogo. Ela atua comum uma
interface introdutória, geralmente oferencendo alguas opções básicas, como:

4

‣ [Novo Jogo]

‣ [Carregar Progresso Anterior]

‣ [Opções]

Vídeo, Áudio, Controle, Acessibilidade, …

‣ …

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Menus
De uma maneira geral, um menu, é uma interface que pemite que o jogador navegue em um
fluxo de telas. Por exemplo, no menu principal, geralmente oferece as seguintes opções:

5

‣ Press Start

‣ Main Menu

‣ Start Game

‣ Load Game

‣ Options

‣ Video [back]

‣ Options [back]

‣ Main Menu

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Sistemas de Menus
Sistemas de Menus são implementados usando uma estrutura de dados do tipo pilha:

6

‣ Topo da pilha é a tela ativa: recebe eventos de entrada

‣ Empilhar para entrar em uma nova tela

‣ Desempilhar para voltar para a tela anterior

‣ Implementação:

- Definir uma classe base para as telas UIScreen: estender essa classe
para cada menu do jogo

- A classe Game gerencia (push/pop) a pilha de telas

- A pilha de telas é renderizada de baixo para cima, por isso implementamos
como um vetor

Topo

Pilha

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

UIScreen: Classe base de menus

7

Métodos:

‣ Update: atualizar o estado da tela

‣ Draw: desenhar a tela

‣ ProcessInput: processar eventos de entrada

‣ Open/Cloase: abrir/fechar e janela

‣ AddButton/AddText/AddImage: adicionar botão/texto/
imagem

Atributos:

‣ mState: estado da tela (Ativo/Fechando)

‣ mButtons: lista duplamente ligada de botões

‣ mText/mImages: listas de botões/imagens

Os menus do jogo, assim como outras partes da interface com o usuário, são implementados
através de telas de interface, que podem conter botões, textos, imagens, etc…:

class UIScreen {
public:
 virtual void Update(float deltaTime);
 virtual void Draw(class Shader* shader);
 virtual void ProcessInput(const uint8_t* keys);

 void Open();
 void Close();

 enum UIState { EActive, Eclosing };

void AddButton(const std::string& name,
std::function<void()> onClick, const Vector2 &pos);
void AddText(const std::string& text);
void AddImage(const std::string& path);

private:
UIState mState;

};

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

UIText: Textos de Interface

8

Classe utilizada para desenhar textos em interfaces, como menus ou HUDs. Possui
principalmente um ponteiro para um texto que pode ser desenhado com TTF.

class UIText {
public:

 void SetText(const std::string& name);
 void Draw(Renderer* renderer);

protected:
 std::string mText;
 class UIFont* mFont;
 Texture *mTextTexture;

 unsigned int mPointSize;
 unsigned int mWrapLength;
 Vector2 mPosition;

};

 Métodos:

‣ SetText: Cria uma textura para o texto dado
usando a fonte passada no construtor

‣ Draw: Desenha textural criada

Atributos:

‣ mText: string contendo o texto atual

‣ mFont: fonte utilizada para renderizar texturas

‣ mTextTexture: textura atual do texto

‣ mPointSize: tamanho da fonte

‣ mWrapLength: comprimento de quebra do texto

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Fontes
Fontes vetoriais são tipicamente implementadas desenhando contornos de caracteres
individuais (glifos) com segmentos de retas e curvas de Bézier.

9

Fontes bitmap utilizam um sprite para cada caracter, ou seja, uma imagem para cada caracter:

Existem diversos padrões de fontes vetoriais:
PostScript, TrueType Font (TTF) , OpenType Font (OTF) , …

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Utilizando Fontes
Em ambos os casos (vetoriais ou bitmap), é necessário definir uma função RenderText(s:
string) que mapeia uma string s em uma textura que irá ser desenhada na tela:

10

SDL_Texture* RenderText(SDL_Renderer* renderer,
const std::string& text,
const Vector3& color = Color::White,

	 	 	 int pointSize = 30,
 unsigned wrapLength = 900);

Font.h

“New Game”

string SDL_Texture

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Carregando e desenhando fontes vetoriais em SDL
Para carregar fontes vetoriais em SDL, precisamos usar uma biblioteca adicional SDL_ttf.h

11

#include <SDL_ttf.h>

int size = 32;
TTF_Font* font = TTF_OpenFont(“font.ttf", size);

int wrapLength = 900;
SDL_Color color = {.r = 21, .g = 21, .b = 123, .a = 255};

SDL_Surface* surf = TTF_RenderUTF8_Blended_Wrapped(font, “New Game", sdlColor, wrapLength);

 // Create texture from surface
 SDL_Texture* texture = SDL_CreateTextureFromSurface(renderer, surf);
 SDL_FreeSurface(surf);

Com as fontas carregadas, podemos gerar uma textura a partir de uma string:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

UIButton: Botões de Interface

12

Classe utilizada para desenhar botões em interfaces. É similar ao UIText mas possui fundo e
pode ser selecionado com o mouse ou teclado:

class UIButton
{
public:

void SetText(const std::string& text);
void SetHighlighted(bool sel);
bool GetHighlighted() const ;

bool ContainsPoint(const Vector2& pt) const;

void OnClick();

private:
std::function<void()> mOnClick;

UIText mText;
bool mHighlighted;

 Vector2 mPosition;
};

 Métodos:

‣ SetText: Cria uma textura a partir de um texto

‣ SetHighlighted: Marca como selecionado

‣ ContainsPoint: Verifica se um ponto está dentro do
botão

‣ OnClick: Função chamada quando o botão é clicado

Atributos:

‣ mText: string contendo o texto atual do botão

‣ mPosition: posição do botão na tela

‣ mHighlighted: estado do botão (selecionado ou não)

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

UIImage: Texturas de Interface

13

A classe que implemente imagens de interface é muito parecida com a classe de text
(UIText)

class UIImage
{
public:

bool Load(const std::string& fileName);
void Unload();

void SetActive(int index = 0);

int GetWidth() const { return mWidth; }
int GetHeight() const { return mHeight; }

private:
SDL_Texture* mTexture;
Vector2 mPosition;

};

Funções:

‣ Load: Cria uma textura a partir de um arquivo de
imagem

‣ Unload: Descarrega textura aual

Atributos:
‣ mText: nome do arquivo de imagem carregado
‣ mPosition: posição da imagem na interface
‣ mWidth: largura da imagem na inteface
‣ mHeight: altura da imagem na interface

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Heads-Up Display (HUD)

14

Camada de interface desenhada constantemente sobre a tela do jogo para mostrar
informações importantes do estado do jogo, por exemplo:

Exemplos:

‣ Vida do personagem

‣ Energia do personagem

‣ Arma equipada

‣ Contadores (dinheiro, bombas, flechas, chaves, …)

‣ Temporizador

Caixas de diálogo não necessáriamente são
partes do HUD, pois são mais relacionadas à
narrativa do que ao estado

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Classes HUD
O HUD pode ser implementado como uma "tela de menu” que mostra informações armazenadas
nos game objects. De uma maneira mais básica, ele deve suportar imagens e textos:

15

‣ Por exemplo, o objeto
mRupeeCounter é um texto
que mostra o número de rupias
que o jogador possui.

‣ Esse número é armazenado no
objeto do jogador.

class HUD : public UIScreen
{
public:

HUD(class Game* game);
~HUD();

void Update(float deltaTime);
void Draw();

private:
class UIImage* mRupeeIcon;
class UIText* mRupeeCounter;
class UIImage* mBombIcon;
class UIText* mBombCounter;
class UIImage* mArrowIcon;
class UIText* mArrowCounter;
...

};

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Barras de Progresso
Para implementar barras de progressos, podemos dividí-lá em três partes: o fundo, o meio e a
frente. A posição de início do meio da barra será calculada em função da sua altura máxima:

16

3. Frente (Ex. Textura)

1. Fundo (Ex. Retângulo)

2. Meio (Ex. Retângulo)

Ordem de desenho:
A posição vertical do retângulo do meio deve ser calculada em
função de uma porcenragem (entre 0 e 1) da altura máxima :

s . y
p h

Altura
máxima h

Posição do
retângulo do meio

s

void DrawProgressBar(SDL_Texture* front, float p, SDL_Rect &r)
{

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderFillRect(renderer, &r);

r.y = static_cast<int>(r.y - r.h * p);
SDL_SetRenderDrawColor(renderer, 0, 255, 0, 255)
SDL_RenderFillRect(renderer, &r);

SDL_RenderCopy(r, front, nullptr, &r);
}

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Relógio

17

Para implementar um relógio, podemos criar uma variável float mTimer para contar o
tempo em no Update do HUD e a cada segundo, atualizar a string de tempo:

void Game::Update(float deltaTime) {
 timer -= deltaTime;
 if (timer < 0.0f) timer = 1.0f;

 int currentSeconds = static_cast<int>(timer);
 if (currentSeconds != lastDisplayedSeconds) {
 lastDisplayedSeconds = currentSeconds;
 HUD->updateTimerTexture();
 }
}

void HUD::DrawTimer(int x, int y) {
 if (timerTexture) {
 timerRect.x = x;
 timerRect.y = y;
 SDL_RenderCopy(renderer, timerTexture, nullptr, &timerRect);
 }
}

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Relógio

18

Para implementar um relógio, podemos criar uma variável float mTimer para contar o
tempo em no Update do HUD e a cada segundo, atualizar a string de tempo:

void HUD::UpdateTimerTexture() {
 if (timerTexture) {
 SDL_DestroyTexture(timerTexture);
 timerTexture = nullptr;
 }

 std::string timeStr = std::to_string(lastDisplayedSeconds);

 SDL_Color color = {255, 255, 255, 255}; // White
 SDL_Surface* surface = TTF_RenderText_Blended(font,

timeStr.c_str(), color);
 if (!surface) return;

 timerTexture = SDL_CreateTextureFromSurface(renderer, surface);
 timerRect.w = surface->w;
 timerRect.h = surface->h;

 SDL_FreeSurface(surface);
}

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Posições Relativas para Resoluções Diferentes
Para suportar diferentes resoluções de monitores, nós geralmente utilizamos posições
relativas ao invés de posições absolutas para posicionar os elementos de interface:

19

1920 x 1080 1680 x 1050

Posição Relativa: (-100, -100)
Relativa ao canto direito inferior

Se usarmos posições
absolutas para posicioar
elementos de interface, eles
podem ficar fora da tela.

Posição Absoluta:
(1900, 100)

Posição Absoluta:
(1900, 100)

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Localização

Uma das formas mais simples para suportar diferentes idiomas no seu jogo, é criar um
dicionário para cada idiona, mapeando as mesmas chaves textuais para as strings do jogo:

20

{
“TextMap”: {

“NewGame”: “New Game”,
“LoadGame”: “Load Game”,
“Options”: “Options”,
...

}
}

{
“TextMap”: {

“NewGame”: “Novo Jogo”,
“LoadGame”: “Carregar Jogo”,
“Options”: “Opções”,
...

}
}

{
“TextMap”: {

“NewGame”: “Nuevo Juego”,
“LoadGame”: “Cargar Juego”,
“Options”: “Opciones”,
...

}
}

en_us.json pt_br.json es_ar.json

Ao invés de usar a string “New Game” no seu jogo, você irá utilizar a chave associada a essa string para acessar a
tradução correta no dicionário TextMap[“NewGame"]

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Localização

Diferentes idiomas podem ter tamanhos diferentes de palavras, portanto a arte da interface
deve acomodar esses diferentes tamanhos:

21

Load Game

Carregar Jogo

Загрузить игру

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Menu de Pausa
O menu de pausa é um menu acionado por meio de um botão no controle ou teclado para
congelar o estado jogo, geralmente mostrando algum menu (de tela única ou múltiplas telas):

22

Super Mario World
Pausa sem menu

The Legend of Zelda: A Link to the Past
Pausa com menu tela única

Super Metroid
Pausa com menu de múltiplas telas

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Menu de Pausa
Para congelar o estado do jogo, basta criar um atributo booleno mIsPaused na classe Game
que desabilita a atualização e processamento de entrada dos game objects:

23

if (!mIsPaused) {
 UpdateActors(deltaTime);
}

if (!mIsPaused) {
 for (auto actor : mActors) {
 actor->ProcessInput(state);
 }
}

Super Mario World
Pausa sem menu

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Menu de Pausa
Em casos onde o menu de pausa ocupa toda a tela, você pode utilzar a flag mIsPaused para
desabilitar o desenho dos game objects também:

24

if (!mIsPaused) {
 UpdateActors(deltaTime);
}

if (!mIsPaused) {
 for (auto actor : mActors) {
 actor->ProcessInput(state);
 }
}

if (!mIsPaused) {
 for (auto actor : mActors) {
 actor->Draw();
 }
}

Super Metroid
Pausa com menu de múltiplas telas

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Cenas
Jogos modernos são compostos de múltiplas cenas (menus, níveis, áreas de um mapa, …) ,
onde cada cena possui uma lista de game objects independente.

Por exemplo, no Mega Man X, o jogo é dividido por níveis:

25

Menu Principal Intro Stage

Menu de
Seleção de Nível

Nível do Penguin

Nível do Polvo

Menu de Senha

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Gerenciamento de Cenas
A função do sistema de gerenciamento de cenas é possibilitar funcionalidades básicas de
definição e transições de cenas:

26

‣ Criar e Destruir uma cena

‣ Transição entre cenas:

‣ Descarregar cena atual: Destruir game objects
da cena atual

‣ Carregar próxima cena: Instanciar game
objects da próxima cena

‣ Opcionalmente aplicar efeitos de transição
(ex. Crossfade)

‣ Geralmente são implementados como máquinas
de estados finitaSuper Metroid

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Máquinas de Estados Finitos
Uma Máquina de Estados Finita (FSM - Finite State Machine) é um modelo matemático
tradicionalmente utilizado para representar programas de computador ou circuitos lógicos.

27

S2S1

S3 S4

a

b

b

d

c

a

Uma FSM é definida por dois conjuntos:

1. Estados que a máquina pode estar (um por vez)
S1, S2, S3, S4 (final)

2. Condições para transições de estados
a, b, c, d

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Exemplo 1: Flappy Bird
Um exemplo bastante simples de FSM para controle de cenas é o Flappy Bird:

28

Estados:

1. Menu Principal

2. Main Game

Note que o Tutorial e o Game Over
são telas de menu, e não cenas

Transições:

‣ 1 2: Clicar no botão Start

‣ 2 1: Clicar no botão OK

→

→

1.
Main
Menu

2.
Main

Game

Botão
Start

Botão OK

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Exemplo 2: Mega Man X
O MegaMan X tem uma FSM mais complexa:

29

1.
Main
Menu

2.
Intro

Stage

3.
Level

Select

3.1
Penguin

Stage

3.2
Octopus

Stage

3.8
Elephant

Stage

4.
Password

Menu

5.
Sigma 1

Botão
Start

Clear
Stage

Botão
Penguin

Botão
Octopus

Botão
Elephant

Botão
End

Botão
Sigma

Clear
Stage

Clear
Stage

Clear
Stage

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Implementando FMS
As técnicas mais comuns para implementação de FSMs são:

‣ Comando Switch/Case

‣ Padrão de Projeto State

‣ Interpretadores (mais usado para IA dos personagens)

30

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Implementando FMS com Comando Switch/Case
Todas as transições são codificadas em um só lugar, escritas como uma grande verificação
condicional com múltiplas ramificações (instruções case em C++).

31

class Game
{
public:

enum class GameScene
{
 MainMenu,
 GamePlay,
};

private:

GameScene mGameScene;
}

Game.h Game.cpp

void Game::InitializeActors() {
 switch (mGameScene) {
 case GameScene::MainMenu:
 ...
 break;
 case GameScene::GamePlay:
 ...
 break;
 default:
 break;
 }
}

void Game::SetScene(GameScene gameState)
UnloadData();
mGameScene = gameState;
InitializeActors();

}

1.
Main
Menu

2.
Game
Play

Botão
Start

Botão OK

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Implementando FMS com Padrão State
Cada estado é responsável por carregar e descarregar seus dados, além de determinar seu
estado sucessor:

32

class GameScene {
public:
 virtual void Enter(Game *game) {};
 virtual void Update(Game *game) {};
 virtual void Exit(Game *game) {};
private:
 float mStateTime;
};

class MainMenuScene : public GameScene {
public:
 void Enter(Game *game);
 void Update(Game *game);
 void Exit(Game *game);
};

Game.cpp

GameScene.h

void Game::Update(GameScene gameState) {
…
mGameState->Update();

}

void Game::SetScene(GameScene gameState)
mGameState->Exit(); // Unload current Data
mGameState = gameState;
mGameState->Enter(); // Load new data

}

1.
Main
Menu

2.
Game
Play

Botão
Start

Botão OK

class Game {
...
GameScene mGameState;
...

}

Game.h

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Efeitos de Transição: CrossFade
Para que a transição não seja muito abrupta, muitos jogos implementam um efeito de
crossfade que é aplicado durante a transição de cenas:

33

Tempo de fade out (ex. 1s) Tempo de fade in (ex. 1s)

bool Game::Initialize() {
...
mGameState = GameScene::MainGame;
InitializeActors();

}

UnloadGameData();
mGameState = GameScene::MainGame;
InitializeActors();

alpha = 0% alpha = 66%

Rect

alpha = 33% alpha = 100% alpha = 66% alpha = 33% alpha = 0%

1. Criar um Rect Preto
com alpha = 0% no
momento da transição
(Ex. Botão Start)

2. Aumentar alpha em função do tempo de fade out 3. Diminuir alpha em função do tempo de fade in

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Efeitos de Transição: CrossFade
No método Draw, calculamos o alpha em função do tempo percorrido
desde o início do efeito mfadeTime e da duração do efeito
FADE_IN_TIME ou FADE_OUT_TIME:

34

void Game::Update(float deltaTime)
{
 if (mFadeState == FadeState::FadeOut)
 {
 mfadeTime += deltaTime;
 if (mfadeTime >= FADE_OUT_TIME)
 {
 mfadeTime = 0.0f;
 mFadeState = FadeState::FadeIn;
 UnloadData();
 InitializeActors();
 }
 }
 else if(mFadeState == FadeState::FadeIn)
 {
 mfadeTime += deltaTime;
 if (mfadeTime >= FADE_IN_TIME) {
 mfadeTime = 0.0f;
 mFadeState = FadeState::None;
 mIsPaused = false;

mCamera->Set(.0f, .0f,);
 mScene->Enter();
 }
 }
}

void Game::Draw()
{

if (mFadeState == FadeState::FadeOut)
{

 float alphaOut = mfadeTime/FADE_OUT_TIME;
 SDL_SetRenderDrawBlendMode(mRenderer, SDL_BLENDMODE_BLEND);
 SDL_SetRenderDrawColor(mRenderer, 0, 0, 0, 255 * alpha);
 SDL_RenderFillRect(mRenderer, nullptr);
}
else if (mFadeState == FadeState::FadeIn)
{

 float alphaIn = mfadeTime/FADE_IN_TIME;
 SDL_SetRenderDrawBlendMode(mRenderer, SDL_BLENDMODE_BLEND);
 SDL_SetRenderDrawColor(mRenderer, 0, 0, 0, 255 * (1.0f - alphaIn));
 SDL_RenderFillRect(mRenderer, nullptr);
}

}

Na função Update, contamos o tempo desde
o início do efeito com mfadeTime:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A16: Síntese de Áudio
‣ Sinais de Áudio

‣ Espectrogramas

‣ Soma de Sinais

‣ Sintetizando Músicas com Sequenciadores

35

