DCC192 CEIG

2025/7

Desenvolvimento de Jogos Digitais
Alo: Interface com o usuario

Prof. Lucas N. Ferreira

Logistica
Avisos

» O TP3: Super Mario Bros sera disponibilizado entre hoje e amanha

Ultima Aula
» Game Design

» Level Design

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Plano de aula

» Sistemas de Menus
» Menu Principal
» Menu de Pausa

» Botoese lFontes

» Gerenclamento de Cenas

» Maquinas de Estados Finitos

» Swtich/Case

» Padrao de Projeto State

» Efeitosde Transicao

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Menu Principal i

O Menu Principal ¢ a primeira tela gue um jogador vé ao iniciar um jogo. Ela atua comum uma
Interface introdutoria, geralmente oferencendo alguas opcoes basicas, como:

» [Novo Jogo |
» [Carregar Progresso Anterior |
» [Opcoes]

Video, Audio, Controle, Acessibilidade, ...

GHME =THRT

PASS WORD }
OCRPRTEREON MODE

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Menus i

De uma maneira geral, um menu, e uma interface que pemite gue o jogador navegue em um
fluxo de telas. Por exemplo, no menu principal, geralmente oferece as seqguintes opgoes:

» Press Start
» Main Menu
p Start Game

CAFPCOM

» [oad Game

» Options
» Video|back]
» Options[back]
"L » Main Menu

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Sistemas de Menus i

Sistemas de Menus sao implementados usando uma estrutura de dados do tipo pilha:

DPELON MODE

» Topo dapilha éatelaativa: recebe eventos de entrada
Topo
» Empilhar para entrar em uma nova tela

» Desempilhar para voltar para a tela anterior

» Implementacao:

- Definiruma classe base para astelas UIScreen: estender essa classe
nara cada menu do jogo

- Aclasse Game gerencia(push/pop)a pilha de telas

- Apilha de telas € renderizada de baixo para cima, por isso implementamos
COmMO um vetor

Pilha

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

UlScreen: Classe base de menus 144/

]
0s menus do jogo, assim como outras partes da interface com o usuario, sao implementados

atraves de telas de interface, que podem conter botoes, textos, imagens, etc...:

Metodos:
class UIScreen {
public: » Update: atualizar o estado da tela
virtual void Update(float deltaTime);
virtual void Draw(class Shader* shader); » Draw: desenhar atela

virtual void ProcessInput(const uint8 t* keys);

» ProcessInput: processar eventos de entrada
volid Open();

void Close(); » Open/Cloase: abrir/fechar e janela

enum UIState { FActive, Eclosing };

» AddButton/AddText/AddImage: adicionar botao/texto/

void AddButton(const std::string& name, inﬁagﬂanﬁ
std: :function<void()> onClick, const Vector2 &pos);

volid AddText(const std::string& text); Atributos:

volid AddImage(const std::string& path); '

. » mState: estado datela(Ativo/Fechando)
private:

v JERane meranes » mButtons: lista duplamente ligada de botoes

» mText/mImages: listas de botoes/imagens

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

UlText: Textos de Interface i

Classe utilizada para desenhar textos em interfaces, como menus ou HUDs. Possul
principalmente um ponteiro para um texto que pode ser desenhado com T TF.

Metodos:
class UlIText {
public: » SetText: Cria uma textura para o texto dado
void SetText(const std::strings name); usando a fonte passada no construtor

volid Draw(Renderer* renderer);

» Draw: Desenha textural criada

protected:
std::string

class UIFont* : Atributos:

Texture *
» mText: string contendo o texto atual
unsigned int
unsigned int
Vector2 mPosition;

mFont: fonte utilizada para renderizar texturas

mTextTexture: textura atual do texto

)
)
» mPointSize: tamanho da fonte
)

mWrapLength: comprimento de quebra do texto

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

Fontes i

Fontes vetoriais sao tipicamente implementadas desenhando contornos de caracteres
individuais (glifos) com segmentos de retas e curvas de Bézier.

dd

SN D SE—

Existem diversos padroes de fontes vetorials:
PostScript, TrueType Font(TTF), OpenType Font(OTF), ...

Fontes bitmap utilizam um sprite para cada caracter, ou seja, uma imagem para cada caracter:

FIEEEZI:IEFEHIJI{ Lh'l HDPE!FI:ETUVI.UI"I"E
E.IJEI:'Ef.BhIi ITII'IDEE TUVIIX VS
123d456.F

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Utilizando Fontes

- m ambos 0s casos (vetoriais ou bitmap), € necessario definir uma fu
string) que mapeia uma string s em uma textura que ira ser desen

string SDL Texture

"New Game” W New Lame

SDL Texture~® (SDL Renderer* renderer,
const std::string& text,
const Vector3& color = Color::White,

pointSize = 30,

wrapLength = 900) ;

7

NCao RenderText (s:

nada na tela:

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

F'ont.h

10

Carregando e desenhando fontes vetoriais em SDL i

Para carregar fontes vetoriais em SDL, precisamos usar uma biblioteca adicional SDL ttf.h

#include <SDL ttf.h>

int size = :
TTF Font* font = TTF OpenFont(“font.ttf", size);

Com as fontas carregadas, podemos gerar uma textura a partir de uma string:

int wrapLength = 900;
SDL Color color = {.r = 21, .g= 21, .b =123, .a = 255};

SDL Surface* surf = TTF RenderUTF8 Blended Wrapped(font, “New Game", sdlColor, wrapLength);

SDL. Texture* texture = SDL CreateTextureFromSurface(renderer, surf);
SDL FreeSurface(surf);

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

11

UIButton: Botoes de Interface i

Classe utilizada para desenhar botoes em interfaces. E similar ao Ul Text mas possui fundo e
node ser selecionado com 0 mouse ou teclado:

class UIButton Métodos:
{

public: | » SetText: Criauma textura a partir de um texto
vold SetText(const std::string& text);

void SetHighlighted(bool sel);
bool GetHighlighted() const ;)

SetHighlighted: Marca como selecionado

bool ContainsPoint(const Vector2& pt) const; » ContainsPoint: Verificaseum pOﬂtO esta dentro do

void OnClick(); botao

» OnClick: Funcao chamada quando o botao e clicado

private:
std::function<void()>
Atributos:
UIText .
bool . . ~
i » mText: string contendo o texto atual do botéao

Vector2 mPosition;

i C - ~
» mPosition: posicao do botao natela

» mHighlighted: estado do botdo(selecionado ou nao)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 12

Ullmage: Texturas de Interface

A classe gue implemente imagens de interface € muito parecida com a classe de text
(UIText)

class UIImage

{ Funcoes:
public:
bool Load(const std::string& fileName); » Load: Cria uma textura a partir de um arquivo de

void Unload(); .
imagem

volid SetActive(int index = 0);

» Unload: Descarrega textura aual
int GetWidth() const { return

int GetHeight() const { return ; AtribUtOS'

prigsxfe{ N » mText: nome do arquivo de imagem carregado
_Texture* ’

Vector?2

» mPosition: posicao daimagem na interface
bi » mWidth: largura daimagem na inteface
» mHeight: altura daimagem na interface

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

13

15

Heads-Up Display (HUD) u

Camada de interface desenhada constantemente sobre a tela do jogo para mostrar
Informacoes importantes do estado do jogo, por exemplo:

(D

-Xxemplos:

Vida do personagem

-nergia do personagem

4

4

» Arma equipada
» Contadores(dinheiro, bombas, flechas, chaves, ...)
4

Temporizador

(I w1 understand'y
T

Not af all

Caixas de dialogo nao necessariamente sao
nartes do HUD, pois sao mais relacionadas a
narrativa do que ao estado

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

Classes HUD

1

0 HUD pode ser implementado como uma "tela de menu” que mostra informacoes armazenadas
N0S game objects. De uma maneira mais basica, ele deve suportar imagens e textos:

locyou understand?

LA

Not at all

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

class HUD : public UIScreen

{
public:

(class Game* game) ;

()7

void (float deltaTime);) POI’ exemplo, O ObJetO
OF mRupeeCounter € um texto

e R que mostra o numero de rupias
class UIImage* ; que 0 jogador possui.

class UIText*
class UIImage*

class UITextx ; » ESse numero é armazenado no

class UIImage*

class UIText* Cers objeto do jogador.

Barras de Progresso i

Para implementar barras de progressos, podemos dividi-la em trés partes: o fundo, o meio e a
frente. A posicao de inicio do meio da barra sera calculada em funcao da sua altura maxima:

PosAi(;éols (;O | A posicao s. y vertical do retangulo do meio deve ser calculada em
retangulo do meio Ordem de desenho: funcao de uma porcenragem p (entre O e 1) da altura maxima h:

1. Fundo (Ex. Retangulo)

- void DrawProgressBar (SDL Texture* front, float p, SDL Rect &r)
: A {
2. Meio (EX RetangU|O) SDL. SetRenderDrawColor (renderer,
Altura SDL RenderFillRect (renderer, &r);
maxima h 5. Frente(Ex. TeXtura) r.y = static cast<int>(r.y - r.

SDL SetRenderDrawColor (renderer,
SDL RenderFillRect (renderer, &r);

SDL RenderCopy(r, front, nullptr, &r);

DCC192 - 2025/1 - Prof. Lucas N. Ferreira 16

Relogio i

Para implementar um reldgio, podemos criar uma variavel float mTimer paracontaro
tempo em no Update do HUD e a cada segundo, atualizar a string de tempo:

volid Game: :Update(float deltaTime) {
timer -= deltaTime;
1f (timer <) timer

int currentSeconds = static cast<int>(timer);

1f (currentSeconds != lastDisplayedSeconds) {
lastDisplayedSeconds = currentSeconds;
HUD->updateTimerTexture();

}

void HUD: :DrawTimer(int x, int y) {
1f (timerTexture) {
timerRect.x = Xx;
, ﬁ timerRect.y = y;
'ﬂﬁ}\% é; SDL RenderCopy(renderer, timerTexture, nullptr, &timerRect);

—

(R 'f‘- "- "—
Crererer

DCC192 - 2025/1 - Prof. Lucas N. Ferreira 17

Relogio L

Para implementar um reldgio, podemos criar uma variavel float mTimer paracontaro
tempo em no Update do HUD e a cada segundo, atualizar a string de tempo:

void HUD: :UpdateTimerTexture() {
if (timerTexture) {
SDL DestroyTexture(timerTexture);
timerTexture = nullptr;

}

std::string timeStr = std::to string(lastDisplayedSeconds);

SDL Color color = {255, 255, 255, 255};

SDL Surface* surface = TTF RenderText Blended(font,
timeStr.c str(), color);

1f (!surface) return;

timerTexture = SDL CreateTextureFromSurface(renderer, surface);

timerRect.w = surface->w;
timerRect.h = surface->h;

SDL. FreeSurface(surface);

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

Posicoes Relativas para Resolucgoes Diferentes

Para suportar diferentes resolucoes de r

onitores, n0s geralmente utilizamos posigoes

relativas ao inves de posicoes absolutas

1920 x 1080

Dara posicionar os elementos de interface:

1680 x 1050

Se usarmos posicoes

Posicao Relativa: (-100, -100) absolutas para posicioar
Relativa ao canto direito inferior elementos de interface, eles

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

podem ficar fora da tela.

7

19

Localizacao i

Uma das formas mais simples para suportar diferentes idiomas no seu jogo, € criar um
dicionario para cada idiona, mapeando as mesmas chaves textuais para as strings do jogo:

{ { {
“TextMap”: { “TextMap”: { “TextMap”: {

“"NewGame” : “New Game”, “NewGame”: “Novo Jogo”, “"NewGame”: “Nuevo Juego”,
“LoadGame”: “Load Game”, “LoadGame”: *“Carregar Jogo”, “LoadGame”: “Cargar Juego”,
“Options”: “Options”, “Options”: “Opcoes”, “Options”: “Opciones”,

en_us.json pt_br.json es_ar.json

Ao inves de usar astring “New Game” N0 Seu jogo, voceé ira utilizar a chave associada a essa string para acessar a
traducao correta no dicionario TextMap|[“NewGame"]

DCC192 - 2025/1 - Prof. Lucas N. Ferreira 20

Localizacao i

Diferentes idiomas podem ter tamanhos diferentes de palavras, portanto a arte da interface
deve acomodar esses diferentes tamanhos:

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

21

Menu de Pausa i

0 menu de pausa ¢ um menu acionado por meio de um botao no controle ou teclado para
congelar o estado jogo, geralmente mostrando algum menu (de tela Unica ou multiplas telas):

=
EHERGY B2

[— SUPPLY = TG ont
‘ |_||'|I -:-|'l.=- -
L] I

= cHARGE | B

LIFTE2 READ TALK
PULL RLUM SWIM

e W &
Super Mario World The Legend of Zelda: A Link to the Past Super Metroid
Pausa sem menu Pausa com menu tela Unica Pausa com menu de multiplas telas

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 22

Menu de Pausa i

Para congelar o estado do jogo, basta criar um atributo boolenomIsPaused na classe Game
que desabilita a atualizagcao e processamento de entrada dos game objects:

)

for (auto actor :) {
actor->ProcessInput(state);

if (!) |
UpdateActors(deltaTime) ;

}

Super Mario World
Pausa sem menu

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

25

Menu de Pausa

-m casosondeo
desabilitar o desen

m
EHERGY S & o159 O=

— BEAM =% ..
Immmmﬁl,f

enu

10 O

iy . _'ll.=. . b, —
- ..:;.:
'.-." *MOREFHIMG EALL
W — R ECOME

= EO0TS

| 'f::_::.
o |]
1
.-::IIl .: l
] —

de pausa ocupa toda atela, vocé pode utilzar aflagmIsPaused para

0S game objects tambem:

if

Super Metroid
Pausa com menu de multiplas telas if

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

for

(!

) 1

(auto actor :) |
actor->ProcessInput(state);

) 1

UpdateActors(deltaTime);

(!

for

}

) 1

(auto actor :
actor->Draw() ;

24

Cenas

Jogos modernos sao compostos de multiplas cenas (menus, niveis, areas de um mapa,
onde cada cena possul uma lista de game objects independente.

Por exemplo, no Mega Man X, 0 jogo e dividido por niveis:

ODRERON MODE

Menu de
Selecao de Nivel

(-tfﬁ M=l E
| [l | l=cs | i

v lrl |[h]

Menu Principal Intro Stage

Nivel do Polvo

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

7

H|[-]

25

Gerenciamento de Cenas i

A funcao do sistema de gerenciamento de cenas ¢ possibilitar funcionalidades basicas de
definicao e transicoes de cenas:

» Criar e Destruiruma cena

—
EHERGY S8 o5

T » [ransicao entre cenas:

» Descarregar cena atual: Destruir game objects
da cena atual

» Carregar proxima cena: Instanciar game
objects da proxima cena

» Opcionalmente aplicar efeitos de transicao
(ex. Crossfade)

» Geralmente sao implementados como maquinas
Super Metroid de estados finita

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

20

Maquinas de Estados Finitos 11

Uma Maquina de Estados Finita (FSM - Finite State Machine) é um modelo matematico
tradicionalmente utilizado para representar programas de computador ou circuitos logicos.

Uma FSM e definida por dois conjuntos:

1. Estados que a maquina pode estar (um por vez)
S1,S2, S3, S4(final)

2. Condig¢oes para transicoes de estados
a, b, cd

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 27

Exemplo 1: Flappy Bird

Um exemplo bastante simples de FSM para controle de cenas e o Flappy Bird:

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Estados:
1. Menu Principal
2. Main Game

Note que o Tutorial e o Game Over
sao telas de menu, e nao cenas

Transicoes:
» 1—2: Clicar no botao Start

» 72— 1: Clicar no botao OK

Botao
Start

Botao OK

13

28

Exemplo 2: Mega Man X

3.1
Penguin
Stage

0 MegaMan X tem uma FSM mais complexa:

Clear
Stage
Botao Botao 39 Clear
Penguin Octopus Octopus Stage
Stage
Botao Clear *
Start 2 Stage 3 ° 4.
—_—> Intro Level ° Password
Stage Select Botao X Clear Menu
Elephant
3.8
Elephant
Stage

Botao
Botao Sigma
End

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Implementando FMS

As tecnicas mais comuns para implementacao de FSMs sao:
» Comando switch/Case
» Padrao de Projeto State

» Interpretadores(mais usado para IA dos personagens)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

50

Implementando FMS com Comando Switch/Case i

Todas as transicoes sao codificadas em um so lugar, escritas como uma grande verificacao
condicional com multiplas ramificacoes (instrucoes case em C++).

class Game vold Game::InitializeActors() {
{ switch () {
public: case GameScene::MainMenu:

enum class GameScene break;
{ case GameScene: :GamePlay:
MainMenu, « o
GamePlay, break;
}; default:
break;

Botao OK

private: }

}

GameScene

} volid Game::SetScene(GameScene gameState)
UnloadData();
= gameState;
InitializeActors();

}

Game.h Game . cpp

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

31

Implementando FMS com Padrao State i

Cada estado e responsavel por carregar e descarregar seus dados, além de determinar seu
estado sucessor:

class Game {

class GameScene {
public:
virtual void Enter(Game *game) {};
virtual void Update(Game *game) {};
virtual void Exit(Game *game) {};
private:
float

}i Game.h Botao OK

GameScene

class MainMenuScene : public GameScene {
public:

volid Enter (Game *game);

volid Update(Game *game);

volid Exit(Game *game);

volid Game: :Update(GameScene gameState) {

—->Update();
}
i

vold Game::SetScene(GameScene gameState)
->Exit(); // Unload current Data

mGameState = gameState;

mGameState->Enter(); // Load new data

GameScene.h }

DCC192 - 2025/2 - Prof. Lucas N. Ferreira Game. cpp 39

Efeitos de Transicao: CrossFade i

Para que a transicao nao seja muito abrupta, muitos jogos implementam um efeito de
crossfade que e aplicado durante a transicao de cenas:

bool Game::Initialize() { UnloadGameData() ;

= GameScene: :MainGame;
InitializeActors();

/1

alpha=0% alpha=33% alpha=066% alpha=100% alpha=066% alpha=33% alpha=0%

= GameScene: :MalinGame;
InitializeActors();

1. Criarum Rect Preto
com alpha=0% no
momento da transicao
(Ex. Botao Start)

2. Aumentar alpha em funcao do tempo de fade out 3. Diminuir alpha em funcao do tempo de fade in

Tempo de fade out (ex. 1s) Tempo de fade in(ex. 1s)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Efeitos de Transicao: CrossFade

No metodo Draw, calculamos o alpha em funcao do tempo percorrido
desde o inicio do efeitomfadeTime e da duracao do efeito

FADE IN TIME ouFADE OUT TIME:

volid Game: :Draw()

== FadeState: :FadeOut)

float alphaOut = /

SDL. SetRenderDrawBlendMode (;, SDL BLENDMODE BLEND);
SDL_SetRenderDrawColor (, 0, 0, O, *) i
SDL RenderFillRect (, nullptr);

}
else 1if (== FadeState::FadeIn)

{
float alphaIn = /
SDL. SetRenderDrawBlendMode (, SDL BLENDMODE BLEND) ;
SDL SetRenderDrawColor (, 0, 0, O, | - alphaln));

SDL RenderFillRect (, nullptr);

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Na funcao Update, contamos o tempo desde
0 inicio do efeito commfadeTime:

volid Game: :Update(float deltaTime)

== FadeState: :FadeOut)

+= deltaTime;
>S=

7
= FadeState: :Fadeln;
UnloadData();

InitializeActors();

== FadeState: :FadelIn)

+= deltaTime;
>=)
= ’
= FadeState: : None;
false;

->Set(.0£f, .0f,);
->Enter();

34

Proxima aula
A16: Sintese de Audio

» Sinais de Audio

» Espectrogramas
» Soma de Sinais

» Sintetizando Musicas com Sequenciadores

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

35

