
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A17: Áudio II - Sistemas de Reprodução

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Logística
Avisos

‣ Hoje é a data entrada do PF1: Game Design Document! Até às 23:59h!

‣ O TP3: Super Mario Bros foi disponibilizado com entrega para o dia 24/10, às 23:59!

Última Aula

‣ Sinais de Áudio

‣ Síntese de Ondas Fundamentais

‣ Sequenciadores

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de aula

‣ Gravação de Áudio em Video Games

‣ Carregando e Reproduzindo Áudio em SDL

‣ Problemas de Gerenciamento de Áudio em Jogos

‣ Sistema de Gerenciamento de Áudio

‣ Play, Pause, Resume e Stop

‣ Lidando com Repetições

‣ Efeitos em Processamento de Sinais

‣ Pitch Shift

3

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Quantos sons diferentes nesse trecho do jogo?

‣ Corrida

‣ Espada x 2

‣ Música de fundo

‣ Batida

‣ Graminha

‣ bomba x 2

‣ Menu x 2

‣ Caverna

‣ Andar na água

‣ …

4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Gravação de Áudio em Video Games
Atualmente, além de áudios sintetizados em tempo real, é muito comum os jogos utilizarem
áudios pré-gravados, que são carregados pelo jogo e reproduzidos no momento adequado.

5

Efeitos
Sonoros:

Trilhas
Sonoras:

https://www.youtube.com/watch?v=v6h1vM9W2NM&ab_channel=StudioMDHR

walk.wav

gold.wav

level1.wav

level2.wav

void Initialize() {
 ...
 j = LoadSount("jump.wav");
 ...

}

void Input() {
 ...
 if(keyPressed(Up))
 PlaySound(j);
 ...

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Carregando e Reproduzindo Áudio em SDL

6

Para carregar arquivos de áudio em SDL, precisamos usar uma biblioteca adicional SDL_Mixer.h

// Inicializa SDL_mixer com suporte a MP3, OGG, etc.
Mix_OpenAudio(44100, MIX_DEFAULT_FORMAT, 2, 2048);

// Altera o número de canais (ex. 3). Se esse função não for chamada, a SDL_Mixer cria 8 canais por padrão.
Mix_AllocateChannels(3);

// Carrega o arquivo de áudio (pode ser WAV, MP3, OGG...)
Mix_Chunk* chunk = Mix_LoadWav("audio.wav");

// Toca o som no canal especificado no primeiro canal disponível (-1), sem loop (0)
Mix_PlayChannel(-1, som, 0);

// Verifica se um som está tocando no canal especificado (ex. 0): 1 se estiver, 0 caso contrário
Mix_Playing(0);

// Para o som no canal especificado (ex. 0)
Mix_HaltChannel(0)

// Libera recursos
Mix_FreeMusic(musica);
Mix_CloseAudio();

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

SDL Mixer: Canais Não, Trilhas

7

Os canais da SDL_Mixer não são os canais mono/stereo, mas sim trilhas de áudio que podem
ser tocadas ao mesmo tempo. Por exemplo, se você estiver usando 3 canais:

level1.wavCanal 0:

walk.wavCanal 1:

sword.wavCanal 2:

Você poderá tocar 3 sons diferentes simultâneamente.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Problemas de Gerenciamento de Áudio em Jogos

8

Considere um sistema com 3 canais e a seguinte situação durante o jogo:

1. Mix_PlayChannel(-1, music) // Tocar musica seleciona canal 0

2. Considere que a música terminou normalmente

3. Mix_PlayChannel(-1, sword) // Tocar efeito da espada seleciona canal 0 novamente!

4. Considere que o jogador apertou pause no jogo e queremos parar a música

5. Mix_HaltChannel(0)

O que acabou de aconter?

Nós acidentalmente paramos o som da espada!

→

→

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Problemas de Gerenciamento de Áudio em Jogos

9

Considere um sistema com 3 canais, mas que 4 áudios foram requisitados ao mesmo tempo:

1. Mix_PlayChannel(-1, music) // Tocar musica seleciona canal 0

Mix_PlayChannel(-1, walk) // Tocar efeito sonoro de andar seleciona canal 1

Mix_PlayChannel(-1, sword) // Tocar efeito sonoro de ataque seleciona canal 2

Mix_PlayChannel(-1, bush) // Tocar efeito sonoro do arbusto ?

O que irá aconter?

O comportamento padrão da SDL_Mixer é substituir o som mais antigo, ou seja, a música!

Precisamos genrenciar os canais com mais cuidado!

→

→

→

→

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Sistema de Gerenciamento de Áudio

10

Um sistema de gerenciamento de áúdio em geral possui as seguintes funções:

class AudioSystem {
 public:

AudioSystem(int numChannels = 8); // Criar um sistema de áudio com um dado número de trilhas
~AudioSystem(); // Destruir um sistema de som

void Update(float deltaTime); // Atualiza estado dos sons ativos

SoundHandle PlaySound(const std::string& soundName, bool looping = false);
void PauseSound(SoundHandle sound); // Pausar um som se ele estiver tocando no momento
void ResumeSound(SoundHandle sound); // Retomar um som se ele estiver pausado no momento
void StopSound(SoundHandle sound); // Parar um som se ele estiver tocando no momento
void StopAllSounds(); // Parar todos os sons em todas as trilhas

void CacheSound(const std::string& soundName);
private:

struct Mix_Chunk* GetSound(const std::string& soundName);

SoundHandle mLastHandle;
std::vector<SoundHandle> mChannels;
std::map<SoundHandle, HandleInfo> mHandleMap;
std::unordered_map<std::string, Mix_Chunk*> mSounds;

};

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Exemplo de uso

11

Na inicialização do jogo (classe Game) iremos constuir um sistema de áudio:

bool Game::Initialize() {
...
mAudio = new AudioSystem();
...

}

Para tocar um novo som, basta chamar uma função PlaySound(“sound.wav”):

bool Player::Update() {
...
mGame->GetAudioSystem()->PlaySound(“sword.wav”);
...

}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

SoundHandle: Identificador de Sons

12

As operações com som utilizarão um ID único em vez de diretamente um canal SDL_mixer:

typedef unsigned int SoundHandle;

SoundHandle PlaySound(const std::string& soundName, bool looping = false);
void PauseSound(SoundHandle sound);
void ResumeSound(SoundHandle sound);
void StopSound(SoundHandle sound);

1. Quando reproduzimos um som com PlaySound(), ele recebe um ID único;

‣ Chamaremos esse ID de SoundHandle, um inteiro sem sinal (unsigned int)

‣ Um SoundHandle pode representar até 232 ~ 4 bilhões de identificadores únicos!

2. Quando quisermos dar Pause(), Resume() ou Stop() em um som alvo, utilizaremos um
SoundHandle para especificá-lo.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

HandleInfo: Estado do Som

13

Para gerenciar os sons em andamento, iremos armazenar o estado de cada SoundHandle ativo
em uma estrutura chamada HandleInfo:

struct HandleInfo {
std::string mSoundName;
int mChannel = -1;
bool mIsLooping = false;
bool mIsPaused = false;

};

std::map<SoundHandle, HandleInfo> mHandleMap;

Ela nos permitirá verificar o estado dos sons em andamento:

‣ Quais sons estão em loop ou pausados;

‣ Qual o som mais antigo ou mais recente;

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

mChannels: Armazenando canais
Os SoundHandles são criados incrementalmente (de um em um) e associados a um canal da
SDL_Mixer por meio de um vetor chamado mChannels:

14

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

Índice corresponde ao canal SDL_mixer
(ex. com 8 canais criados)

Valor representa um SoundHandle
(zero significa que o canal está livre):

mLastHandle = 1 PlaySound(“level1.wav”)

mLastHandle = 2 PlaySound(“walk.wav”)

mLastHandle = 3 PlaySound(“sword.wav”)

mLastHandle = 4 PlaySound(“sword.wav”)

→
→
→
→

SoundHandle mLastHandle;
std::vector<SoundHandle> mChannels;

SoundHandle mLastHandle = 0;

A mLastHandle é um contador de sons que repesenta o SoundHandle do último som tocado:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

PlaySound: Reproduzindo Sons
Os SoundHandles são criados incrementalmente (de um em um) e associados a um canal da
SDL_Mixer por meio de um vetor chamado mChannels:

15

0 1 2 3 4 5 6 7

vector<SoundHandle> mChannelsSoundHandle mLastHandle =

PlaySound(“level1.wav”)

1. Percorrer o vetor mChannels até que (mChannels[i] == 0) canal i está disponível→

2. Se houver um canal disponível:

‣ Incrementar (mLastHandle++) e atribuir ao canal i encontrado (mChannels[i] = mLastHandle)

‣ Tocar o som usando SDL_MixPlayChannel(i) e adicionar um novo HandleInfo a mHandleMap;

01 0 0 0 0 0 0 0 01

PlaySound(“walk.wav”)

PlaySound(“sword.wav”)

PlaySound(“sword.wav”)

2 23 34 4

map<SoundHandle, HandleInfo>
mHandleMap;

1

“lev"
True
False

2

"wal"
False
False

3

“swo"
False
False

4

“swo"
False
False

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

PlaySound: Reproduzindo Sons
Os SoundHandles são criados incrementalmente (de um em um) e associados a um canal da
SDL_Mixer por meio de um vetor chamado mChannels:

16

1 2 3 4 5 6 7 8vector<SoundHandle> mChannelsSoundHandle mLastHandle =

PlaySound(“level1.wav”)

3. Se nehum canal estiver disponível, temos que escolher algum para sobrescrever:

i. Se houver instâncias existentes do som (ex. “sword.wav”), substitua a instância mais antiga desse mesmo som;

ii. Caso contrário, substitua o som não em loop mais antigo;

iii. Caso contrário, substitua o som mais antigo.

8

PlaySound(“sword.wav”)

...

PlaySound(“sword.wav”)

0 1 2 3 4 5 6 7

map<SoundHandle, HandleInfo>
mHandleMap;

1

“lev"
True
False

2

"wal"
False
False

3

“swo"
False
False

4

“swo"
False
False

5

“swo"
False
False

6

“swo"
False
False

7

“swo"
False
False

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Update: Atualizando estado de sons ativos
A cada quadro, na funcão AudioSystem::Update(deltaTime), vamos verificar se um som
ativo não está mais tocando, para reinicializar seu estado

17

1 2 0 4 0 0 0 0

0 1 2 3 4 5 6 7

vector<SoundHandle> mChannelsSoundHandle mLastHandle =

PlaySound(“level1.wav”)

PlaySound(“walk.wav”)

PlaySound(“sword.wav”)

PlaySound(“sword.wav”)

4

map<SoundHandle, HandleInfo>
mHandleMap;

1

“lev"
True
False

2

"wal"
False
False

4

“swo"
False
False

1. Percorrer o vetor mChannels:

2. Se o canal estiver ativo (mChannels[i] != 0) e não estiver mais tocando (Mix_Playing(i) == 0)

i. Liberar o canal (mChannels[i] = 0)

ii. Remover o HandleInfo desse som do mapa de SoundHandles (mHandleMap.erase(mChannels[i]))

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Pause e Stop
Para Pausar/Parar um som, basta (1) verificar se o SoundHandle existe no mHandleMap e (2) se
ele já não está pausado/parado:

18

1 2 0 0 0 0 0 0vector<SoundHandle> mChannelsSoundHandle mLastHandle = 2

PlaySound(“level1.wav”)

PlaySound(“walk.wav”)

0 1 2 3 4 5 6 7

map<SoundHandle, HandleInfo>
mHandleMap;

1

“lev"
True
False

2

"wal"
False
False

PauseSound(1)

StopSound(0)

1. Se o SoundHandle existir e não estiver pausado/parado:

i. Recuperar o canal associado a esse SoundHandle (canal = mHandleMap[sound].mChannel)

ii. Pausar/Parar esse som: Mix_Pause(canal)/Mix_HaltChannel(canal)

No caso de parar, também precisa liberar o canal e remover a entrada do mHandleMap, como fizemos no Update

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Lidando com Repetições
Quando reproduzimos o mesmo efeito de som repetidas vezes, como é o caso de animações
recorrentes no jogo, ele se torna rapidamente enjoativo.

19

Para resolver esse problema, podemos associar
mais de um som para a mesma animação:

Andar

Grama Água Pântano

Grama Água Pântano

Andar

Superfície?

‣ grama1.wav
‣ grama2.wav
‣ grama3.wav

‣ agua1.wav
‣ agua2.wav
‣ agua3.wav

‣ pantano1.wav
‣ pantano2.wav
‣ pantano3.wav

Escolher um dos sons aleatóriamente!

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Lidando com Repetições
Quando reproduzimos o mesmo efeito de som repetidas vezes, como é o caso de animações
recorrentes no jogo, ele se torna rapidamente enjoativo.

20

Para resolver esse problema, podemos associar
mais de um som para a mesma animação:

Andar

Grama Água Pântano

Grama Água Pântano

Andar

Superfície?

‣ grama1.wav ‣ agua1.wav ‣ pantano1.wav

Ao invés de criar múltiplas versões do mesmo
som, podemos manter apenas uma e alterá-la em

memória aplicando efeitos de áudio!

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Efeitos de Processamento de Áudio
Em processamento de sinais, um efeito é uma transformação feita no sinal de áudio para fins
estéticos ou de melhoria de qualidade. Entre os efeitos muitos mais comuns em jogos estão:

21

Efeito Definição Exemplo de Uso

 Reverb Simula reflexões sonoras em um espaço
(como um corredor ou sala)

Simular o eco de sons altos em lugares
fechados (ex. carro dentro do tunel)

 Filtro passa-baixo Simular sons passando por paredes Simular sons passando por paredes

 Compressor Normalizar os níveis de volume de
arquivos de som diferentes

Normalizar os níveis de volume de
arquivos de som diferentes

 Pitch Shift
 (Deslocamento de Tom)

Aumenta ou diminui o tom sem alterar a
velocidade

Adicionar variação sonora em uma
animação (ex. tiros ou passos)

https://www.youtube.com/watch?v=1gs-53V2vq8&ab_channel=GeorgeProsser

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A18: Gráficos 3D

22

