
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A18: Câmeras 3D

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de aula

‣ Cenas 2D e 3D

‣ Divisão de Perspectiva

‣ Matriz de Câmera (View Matrix)

‣ Matriz de Projeção (Projection Matrix)

‣ Câmera em Primeira Pessoa

‣ Câmera em Terceira Pessoa

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Cenas 2D

3

Uma cena 2D é composta minimamente por (a) um conjunto de objetos e (b) uma câmera,
onde os objetos são específicados por seus vértices e a câmera é definida em função

⃗v1 ⃗v2

⃗v3 ⃗v4

⃗v1 ⃗v2

⃗v3 ⃗v4

(a) Objetos são definidos por
vértices e posicionados no
mundo pela model matrix M

(b) Câmera é
posicionada
diretamente no mundo e
desloca a posição dos
objetos -

⃗C

p = Mv ⃗C

p = Mv

pm

pb

⃗C

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Cenas 2D
Analisando uma cena 2D formalmente, o que está acontecendo é a mudança de sistemas de
coordenadas: Objeto Mundo Câmera Recorte (Clip) Tela→ → → →

4

1. Sist. de Coords.
do Objeto

2. Sist. de Coords.
do Mundo

3. Sist. de Coords.
da Câmera

4. Sist. de Coords.
de Recorte (Clip) Model

Matrix M
Posição da
Câmera ⃗C

Projection
Matrix P

⃗C⃗pB

⃗pA

⃗pB

⃗pA

⃗v1 ⃗v2

⃗v3 ⃗v4
⃗v1 ⃗v2

⃗v3 ⃗v4

⃗p = M ⃗v ⃗p′￼ = (M ⃗v) − ⃗C ⃗p′￼ = P((M ⃗v) − ⃗C)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz da Câmera (View Matrix)V
A subtração por para passar de 2. para 3. é uma translação simples e, portanto, podemos
reprentá-la por uma matriz também, realizando todas as etapas por multiplicação:

⃗V

5

1. Sist. de Coords.
do Objeto

2. Sist. de Coords.
do Mundo

3. Sist. de Coords.
da Câmera

4. Sist. de Coords.
de Recorte (Clip)Model

Matrix M
View

Matrix V
Projection

Matrix P

⃗p = M ⃗v ⃗p′￼ = VM ⃗v ⃗p′￼ = PVM ⃗v

V =

1 0 0 −cx

0 1 0 −cy

0 0 1 −cz

0 0 0 1

⃗C ⃗pB

⃗pA

⃗p′￼ = (M ⃗v) − C

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Cenas 3D

6https://gist.github.com/lucasnfe/2e7c987a39457912ca4ce61b66598fa8

Uma cena 3D também é composta minimamente por (a) um conjunto de objetos e (b) uma
câmera, onde os objetos são específicados da mesma maneira, mas a câmera é diferente:

‣ Objetos 3D
Geralmente representados por conjuntos de vértices.

‣ Câmera
Geralmente representada por uma posição, orientação,
distância focal e planos de recorte próximo e distante

‣ Fonte de Luz
Vários tipos de fontes de luz podem ser específicadas:
direcional, ambiente e spot.

‣ Materiais
Propriedades visuais dos objetos, descrevendo como a
luz deve interagir com os objetos.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Cenas 3D
O mesmo processo de transformações ocorre em cenas 3D, porém as matrízes de Câmera
(view) e Projeção (Projection) são diferentes:

7

1. Sist. de Coords.
do Objeto

2. Sist. de Coords.
do Mundo

3. Sist. de Coords.
da Câmera

4. Sist. de Coords.
De Recorte (Clip)

Model
Matrix

View
Matrix

Projection
Matrix

⃗p = M ⃗v ⃗p′￼ = VM ⃗v ⃗p′￼ = PVM ⃗v

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Divisão de Perspectiva (Perspective Divide)
Após o espaço de recorte, uma operação chamada Divisão de Perspectiva é realizada
automaticamente no pipeline, mapeando as coordenadas homogêneas 4D dos vértices para o
normalized device coordinates (NDC) da OpenGL :[−1,1]3

8

4. Sist. de Coords. de Recorte

v =
x
y
z
w

x
w
y
w
z
w

Divisão
Perspectiva

Note que se , a divisão perspectiva não terá efeito algum na posição dos vértices, mas
se , elas serão reescalada pelo fator . Isso será útil na projeção perspectiva!

w = 1
w ≠ 1 1/w

v

Coordenadas
Homogêneas

4D

NDC
3D

(−1, − 1,1)

(1,1, − 1)

(1, − 1,1)

(−1,1, − 1)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz da Câmera (View Matrix)V
A Matriz de Câmera (View Matrix) faz uma mudança de base entre o sistema de coordenadas
do mundo e o sistema de coordenadas da câmera, definido :

V

9

V =

b1
x b1

y b1
z 0

b2
x b2

y b2
z 0

b3
x b3

y b3
z 0

0 0 0 1

⋅

1 0 0 −Cx

0 1 0 −Cy

0 0 1 −Cz

0 0 0 1

Lembrando que para fazer a mudança de base de um vetor para uma nova base :

1. Criar uma matriz de translação para mudar a origem para o ponto (translação)

2. Criar uma matriz com os três eixos para projetar em , e (rotação)

3. Definir a matriz como e multiplicar por

⃗v B = (b⃗1, b⃗2, b⃗3)

T C

R (b⃗1, b⃗2, b⃗3) ⃗v b⃗1 b⃗2 b⃗3

V = R ⋅ T ⃗v

https://www.ime.unicamp.br/~marcia/AlgebraLinear/mudanca_base.html

R T

C
vB = RT ⃗v

⃗v

⃗vB

b⃗1

b⃗2
b⃗3

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz da Câmera (View Matrix)V
No caso da View Matrix , a nova base é formada pelos vetores (up), (right) e (forward),
que apontam para cima, direita e frente da câmera, respectivamente:

V U R F

10

V =

rx ry rz 0
ux uy uz 0
fx fy fz 0
0 0 0 1

⋅

1 0 0 −Cx

0 1 0 −Cy

0 0 1 −Cz

0 0 0 1

Up vector ⃗u
Forward vector ⃗f

Right vector ⃗r
Posição da
câmera C

V =

rx ry rz −r ⋅ C
ux uy uz −u ⋅ C
fx fy fz −f ⋅ C
0 0 0 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz da Câmera (View Matrix)V
Tradicionalmente, a view matrix é criada por uma função chamada CreateLookAt, que calcula
a base da câmera formada pelos vetores (up), (right) e (forward):U R F

11

Up vector ⃗u
Forward vector ⃗f

Right vector ⃗r

Matrix4 CreateLookAt(const Vector3& c, const Vector3& t
 const Vector3& u)

{

Vector3 f = Vector3::Normalize(c - t);
Vector3 r = Vector3::Normalize(Vector3::Cross(u, f));
u = Vector3::Normalize(Vector3::Cross(f, r));

Vector3 d;
d.x = Vector3::Dot(r, eye);
d.y = Vector3::Dot(u, eye);
d.z = Vector3::Dot(f, eye);

float view[4][4] = {{r.x, r.x, r.x, -d.x},
 {u.y, u.y, u.y, -d.y},
 {f.z, f.z, f.z, -d.z},
 {0.0f, 0.0f, 0.0f, 1.0f}};

 return Matrix4(view);
}

Alvo T

Posição da
câmera C

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Projeções
Agora que que os vértices dos objetos estão no sistema de coordenadas da câmera,
nos resta apenas projetá-los em pontos superfície 2D da tela:

v ∈ ℝ4

p ∈ ℝ2

12

Projeção Ortográfica Projeção Perspectiva

‣ Tamanho dos objetos projetados não
depende da distância da câmera
Objetos mais distantes da câmera têm o mesmo
tamanho do que os mais próximos

‣ Tamanho dos objetos projetados depende
da distância da câmera
Objetos mais distantes da câmera ficam menores
do que os mais próximos.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : OrtográficaP
A Projeção Ortográfica restringe a cena por um paralelepipedo na frente da câmera (origem) e
mapeia esse volume para o normalized device coordinates (NDC) da OpenGL :[−1,1]3

13

x

y

z

(r, t, − f)

(l, b, − n)
(−1, − 1,1)

(1,1, − 1)

2

2

2
(r, b, − n)

(l, t, − f)

(1, − 1,1)

(−1,1, − 1)

far plane

near plane

Posição da
câmera C

Normalized Device Coordinates (NDC)

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

Paralelepípedo definido por seis pontos:
‣ left , right , bottom e top near e far l r b t n f

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

T =

1 0 0 − l + r
2

0 1 0 − b + t
2

0 0 1 − n + f
2

0 0 0 1

Matriz de Projeção : OrtográficaP
A primeira parte da matriz de projeção ortográfica é uma transformação de translação que
move o centro do parlelepídedo para o centro do sistema de coordenadas da câmera:

T

14

x

y

z

- Translação :

- Translação :

- Translação :

Tx −(l + r)/2

Ty −(b + t)/2

Tz −(f + n)/2

(r, t, − f)(l, t, − f)

(l, b, − n) (r, b, − n)

2

2

2

NDC

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : OrtográficaP
A segunda parte da matriz de projeção ortográfica é uma transformação de escala para
ajustar as dimensões do parapelípepo para as dimensões do cubo NDC

S
[−1,1]3

15

x

y

z

- Escala em :

- Escala em :

- Escala em :

x (r − l) ⋅ Sx = 2 → Sx =
2

r − l

y (r − l) ⋅ Sy = 2 → Sy =
2

r − l

z (r − l) ⋅ Sz = 2 → Sz =
−2

r − l

2

2

2

NDC

S =

2
r − l 0 0 0

0 2
t − b 0 0

0 0 −2
f − n 0

0 0 0 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : OrtográficaP
Combinando as matrizes de translação e escala com uma multiplicação, obtemos a
seguinte matriz de projeção ortográfica :

T S
Portho = S ⋅ T

16

Portho

2
r − l 0 0 0

0 2
t − b 0 0

0 0 −2
f − n 0

0 0 0 1

⋅

1 0 0 − l + r
2

0 1 0 − b + t
2

0 0 1 − n + f
2

0 0 0 1

=

2
r − l 0 0 − l + r

r − l

0 2
t − b 0 − b + t

t − b

0 0 −2
f − n

n + f
f − n

0 0 0 1

S T

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : OrtográficaP
A Projeção Ortográfica restringe a cena por um paralelepipedo na frente da câmera (origem) e
mapeia esse volume para o normalized device coordinates (NDC) da OpenGL :[−1,1]3

17

x

y

z

(r, t, − f)

(l, b, − n)
(−1, − 1,1)

(1,1, − 1)

2

2

2
(r, b, − n)

(l, t, − f)

(1, − 1,1)

(−1,1, − 1)

Paralelepípedo definido por seis pontos:
‣ left , right , bottom e top near e far l r b t n f

far plane

near plane

Posição da
câmera C

NDC

2
r − l 0 0 − l + r

r − l

0 2
t − b 0 − b + t

t − b

0 0 −2
f − n − n + f

f − n

0 0 0 1

Portho

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : PerspectivaP
A Projeção Perspectiva restringe a cena por um tronco de pirâmide na frente da câmera e
mapeia esse volume para o normalized device coordinates (NDC) da OpenGL :[−1,1]3

18

x

y

z (−1, − 1,1)

(1,1, − 1)

2

2

2

(1, − 1,1)

(−1,1, − 1)

(0,0,0)

n

? 0 0 ?
0 ? 0 ?
0 0 ? ?
0 0 0 ?

Posição da
câmera C

NDC

Pirâmide definida por:
‣ Distâncias near e far
‣ Altura e largura
‣ Campo de visão no eixo (field of view - fovY)

n f
h w

θ y

θ

f

w

h

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : PerspectivaP
A primeira parte da matriz de projeção é fazer com que objetos mais distantes da câmera, ou
seja, com valores maiores de , pareçam menores. z

19

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0

⋅

x
y
z
1

=
x
y
z

−z

Como a OpenGL irá realizar a divisão de perspectiva
automaticamente, basta alterar a última linha da
matriz de projeção para Ppers[3] = [0 0 −1 0]

x

z

f

n
z1

z2

Divisão Perspectiva irá dividir as coordenadas por :

 , ,

−z
x

−z
y

−z
z

−z

Ppers[3]

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : PerspectivaP
A segunda parte da matriz de projeção é encontrar os fatores de escala horizontais para
acomodar a proporção da tela :

Sx
a = h/w

20

a 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

- Escala em : x Sx = a
x

y

z

Posição da
câmera C

n
w

h a =
h
w

Proporção da tela:

Como a proporção da tela foi definida com a altura
no numerador, só precisamos “corrigir" o eixo

a h
x

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : PerspectivaP
A terceira parte da matriz de projeção é encontrar os fatores de escala horizontais e verticais

 em função do ângulo , de tal forma que, quanto maior , menor os objetos:
Sx

Sy θ θ

21

θ

1
tan(θ/2) 0 0 0

0 1
tan(θ/2) 0 0

0 0 1 0
0 0 0 1

- Escala em :

- Escala em :

x Sx = 1/tan(θ/2)

y Sy = 1/tan(θ/2)Para isso, podemos simplesmente escalar e
pelo inverso da razão entre oposto/adjacente

x y

Oposto

Adj.
θ/2 1

op./adj.
=

1
tan(θ/2)

Fator inversamente
proporcional a :θ

y

x

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : PerspectivaP
A última parte é normalizar os valores de no intervalo com uma escala e uma
translação , assim como fizemos na projeção ortográfica:

z [−1,1] Sz
Tz

22

1 0 0 0
0 1 0 0
0 0 f

f − n 0

0 0 0 1
θ

x

y
n

f

f − n

- Escala em : z Sz =
f

f − n

1 0 0 0
0 1 0 0
0 0 1 −n
0 0 0 1

- Translação em : z Tz = − n

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : PerspectivaP
Combinando as matrizes de translação e escala com uma multiplicação e alterando a
última linha para divisão de perspectiva, obtemos a seguinte matriz de projeção perspectiva:

T S

23

1
a 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⋅

1
tan(θ/2) 0 0 0

0 1
tan(θ/2) 0 0

0 0 1 0
0 0 0 1

⋅

1 0 0 0
0 1 0 0
0 0 f

f − n 0

0 0 0 1

⋅

1 0 0 0
0 1 0 0
0 0 1 −n
0 0 0 1

=

=

1
a ⋅ tan(θ/2) 0 0 0

0 1
tan(θ/2) 0 0

0 0 f
f − n

−nf
f − n

0 0 −1 0

Ppersp

1
a ⋅ tan(θ/2) 0 0 0

0 1
tan(θ/2) 0 0

0 0 f
f − n

−nf
f − n

0 0 0 1

Alterar última linha para divisão de perspectiva

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Matriz de Projeção : PerspectivaP
A Projeção Perspectiva restringe a cena por um tronco de pirâmide na frente da câmera e
mapeia esse volume para o normalized device coordinates (NDC) da OpenGL :[−1,1]3

24

x

y

z (−1, − 1,1)

(1,1, − 1)

2

2

2

(1, − 1,1)

(−1,1, − 1)

(0,0,0)

n

Posição da
câmera C

NDC

Pirâmide definida por:
‣ Distâncias near e far
‣ Altura e largura
‣ Campo de visão no eixo (field of view - fovY)

n f
h w

θ y

θ

f

w

h

Ppersp

1
a ⋅ tan(θ/2) 0 0 0

0 1
tan(θ/2) 0 0

0 0 f
f − n

−nf
f − n

0 0 −1 0

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Câmera em Primeira Pessoa
Em uma Câmera em primeira pessoa, a posição da câmera é sempre um deslocamento vertical
definido da posição do jogador:

25

void FPSCamera::Update(Actor *player, float tOffset)
{

// A posição da câmera (c) é a posição do jogador
Vector3 c = player->GetPosition();

// Posição alvo (t) na frente do jogador
 Vector3 t = c + player->GetForward() * tOffset;

// Up é um vetor unitário no eixo Y
 Vector3 up = Vector3::UnitY;

// Cria view matrix com os parâmetros acima
 Matrix4 view = Matrix4::CreateLookAt(c, t, up);
 SetViewMatrix(view);
}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Câmera em Terceira Pessoa
A Câmera em terceira pessoa segue um ponto à frente (tDist) de um objeto alvo (tPos) com
uma distância de acompanhamento vertical (vDist) e horizontal (hDist) predefinida.

26

void FollowCamera::Update(Actor *player, float hDist,
float vDist, float tDist)
{

// A posição da câmera (c) atrás do jogador
Vector3 c = player->GetPosition();
c -= player->GetForward() * hDist;
c -= Vector3::UnitY * hVist;

 // A posição do alvo (t) a frente do jogador
 Vector3 t = player->GetPosition() +
 player->GetForward() * tDist;

// Up é um vetor unitário no eixo Y
 Vector3 up = Vector3::UnitY;

// (Up is just UnitZ since we don't flip the camera)
 Matrix4 view = Matrix4::CreateLookAt(c, t, up);
 SetViewMatrix(view);
}

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A19: Iluminação
‣ Iluminação 2D

‣ Light Mapping

‣ Flat Shading

‣ Gouraud Shading

‣ Phong Shading

27

