DCC192 CEIG

2025/7

Desenvolvimento de Jogos Digitais
AZ21: |A — Pathfinding

Prof. Lucas N. Ferreira

Plano de aula

» Representacao de Mapas em Jogos
» Buscaem Largurae Profundidade

» Algoritmo de Djikstra

» Heuristicas e Algoritmo A*

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Pathfinding em Jogos i

- M MUuitos jogos, precisamos mover objetos do jogos de maneira “inteligente”, incluindo
utilizando o menor caminho, desviando de obstaculos, sequindo outros objetos, etc.

Warcraf 1: Pathfinding para movimentacao de unidades com o mouse

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Problemas de Busca no Espaco de Estados i

Pathfinding e formalizado em [A como um problema de busca no espaco de estados:

» Conjunto de estados S, chamado de espaco de estados
» Estadoinicials € §

» Estadofinalg € §
» Funcao de agoes A(s) que retorna o conjunto finito de acoes possiveisem s

» Modelo de transicao 7(s, a), uma funcao que retorna um novo estado s'resultado da
aplicacao daacao a no estado s

» Funcao custo de acao (C(s, a, s’) que retorna o custo numerico da aplicacao daacao a no
estado s para alcancar o estado §’

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Espaco de Estados

-m problemas de busca, o espaco de estados ¢ geralmente representado como um grafo, onde

0s vértices sao os estados e as arestas sao as acoes:

4

”“’ D

|

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

O conjunto de vértices é igual ao de estados S

O conjunto de arestas A contém as acoes

Uma solugao (caminho) € uma sequéncia de estados
C=1{s58,9%,...,8} talque(s;, s;,;) € A, paratodo s;na
sequéncia

Um caminho C é 6timo, também denotado como C*, se ndo existe
nenhum outro caminho entre s e g com custo menor que C

Pathfinding: Espacos de Estados i

As posicoes dos objetos em jogos constuman ser continuas. Precisamos discretizar esse
espaco para fazer buscas eficientes. A tecnica mais comum é utilizar um grid:

» Conjunto de estados S: cada célulalivre € um estado
» Estadoinicials € 5: acoordenada (i, j) atual da unidade

» Estado final ¢ € 5: a coordenada destino clicada pelo
jogador

» Funcao de agoes A(s): direcdes(up, down, left, ...) das
coordenadas vizinhas de s que estao livres

» Modelo de transicdo 7(s, a): acélulas’vizinhade s
alcancada pela movimentacao na direacao de a

» Funcao custo de acdo C(s, a, s’): um valor real pré-
definido de se caminhar na grama vs. nas pedras(opcional)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Pathfinding: Espacos de Estados

As posicoes dos objetos em jogos constuman ser continuas. Precisamos discretizar esse
espaco para fazer buscas eficientes. A tecnica mais comum é utilizar um grid:

Cada celulavazia e um vértice, onde celulas adjacentes
sem obstaculo entre si sao conectadas via uma aresta

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Arvore de Busca

Em |A, os grafos do espaco de estados

geralmente nao sao armazenados em memaoria,

pOIS, na pratica, costumam ser muito grandes.

Dizemos que os grafos representados por um estado
inicial e uma funcao sucessora sao implicitos.

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Ao inves disso, podemos aplicar a funcao do
modelo de transicao 7(s, a) para gerar uma

arvore de busca, comecando pelo estado inicial.

o
; o olhoRo
oJoRCIRoNeE d@
@

p Q / @

Iz

Arvore de Busca: Definicoes

» (O estadoinicial @ araizda arvore:

» Um no é expandido quando um algoritmo
considera as acoes para aquele estado s
chamando a funcao A(s);

b

C

» Umno é gerado quando seu pal € expandido; @ @ @)

» (0 conjunto de caminhos produzidos ate o
momento € chamado de fronteira;

» Um ciclo ocorre quando um nd aparece
Multiplas vezes em um mesmo caminho

(e.g., S, A E,C, A E, G)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

P

(9)

(a) (f
c g
a

(@

P

(9)

Ciclos e caminhos redundantes

Ciclos sao caminhos redundantes geram arvores de busca infinitas:

» Podemos evitar ciclos durante a busca com uma tabela de nos alcangados,
expandindo apenas agueles que:

» Ainda nao foram visitados ou;
» Estao sendo visitados por um caminho melhor.

@-‘Ja -

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

10

Algoritmos de busca(que estudaremos) m

» Busca sem informacao

Nao possuem informacao sobre a distancia entre um determinado estado e e o estado final g
» Buscaem largura(Breath-first search - BFS)— assume que acoes todas tem 0 mesmo custo
» Buscaem profundidade (Depth-first search- DFS)— assume que acoes todas tem o mesmo custo
» Buscade custo uniforme (Algoritmo de Dijkstra - UCS)— assume acoes com custo diferentes
» Buscainformada
Possuem informacao sobre a distancia entre um determinado no e o estado final

» Algoritmo A*

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 11

Busca em Largura UL

Fronteira é uma fila (FIFO) Tempo | N6 Fronteira (fila) Alcancado
- Xpandir o N0 mais raso primeiro

» NOs a uma aresta de distancial(d, e, p) 2
» NOs a duas arestas de distancia(b, ¢, h, r, g} 3
» NOs a trés arestas de distancia(a, f) 2
g 5
/@‘\ ° 0

8

/ @ / 9

A
S
o

/
f\\

N

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 12

Busca em Largura

Fronteira @ uma fila(FIFQ)

4
4

NOs a L

h

NOs ac

- Xpandir o N0 Mais raso primeiro

na aresta de distancia(d, e, p)

uas arestas de distancia(b, c, h, r, q)

» NOs atrés arestas de distancia(a, f)
> ...

N

ey
~)

Ot

8

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Iz

Tempo | N6 Fronteira (fila) Alcancado
1 S (&, e p] {s, d, e, p}
2 d [e, p, b, c] {d, e, p, b, c}
3 e [p.b.c, h r] {d,e,p,b,c hr}
4 D b, c, hrq] {d,e,p.b,c hrql
5 b e hrq al {d,e,p,b,c hrq, a}
6 C [k, r, g, a] {d, e, p,b,c hrq a}
7 h £, al {d,e, p,b,c hrq a}
8 r 4, a,f {d,e,p,b,c hrq, al
9 q a, f. {d,e,p,b,c hrq, a}
10 a £ g {d,e,p,b,c hrq, a}
1 f [e {d,e p,b,chrqa}
12 g [] {d,e p/b,c hrqa}

Busca em Largura

Fronteira é uma fila(FIFO)

- Xpandir o N0 Mais raso primeiro

» NOs auma aresta de distancial(d, e, p)

» NOs a duas arestas de distancia(b, ¢, h, r, g}
» NOs a trés arestas de distancia(a, f) b C h r q

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 14

13

Propriedade da Busca em Largura

» Complexidade de tempo

b fator de ramificacao

Explora todos 0os nos acima da solucao mais rasa — sejad

a profundidade da solucao mais rasa, a complexidade de 1 nod
tempo ¢ O(b%) |
b nds
» Complexidade de espaco .
P Pak d niveis b2 nos
Armazena todos os nés até o nivel d antes da solucao g,
portanto complexidade de espaco é O(b9)
b% nos

» Completo

Sim. Se existe uma solucao, entdo d ¢ finito e a BFS vai
encontra-la

» Otimo

Sim, mas apenas se 0s custos forem uniformes (iguais a 1)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Busca em Profundidade i

Fronteira é uma pilha (LIFO) Tempo | N6 Fronteira (pilha) Alcancado

-Xpandir o no0 mais profundo primeiro

» NOs do primeiro caminho

» NOs do segundo caminho

» NOs do terceiro caminho

> ...

O | I N | o o1 | &~ NN

)

¢
¢
()

5 5‘

A
A

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

N

Busca em Profundidade

Fronteira é uma pilha (LIFO)
-Xpandir o no mais profundo primeiro
» NOs do primeiro caminho

» NOs do segundo caminho

» NOs do terceiro caminho

> ...

~~A
e ...n‘

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Iz

Tempo | N6 Fronteira (pilha) Alcancado
1 S [d, e p] {s, d, e, p}
2 p [d. e &] ts,d. e p, q}
5 q [d, €] (s, d. e p. q]
4 e d, h,+] {s,d, e, p q hr}
5 r d, h, f] {s,d, e p q hrf}]
6 f [d, h, g] {s.d, e p.q hrf}
7 g [d, h] {s,d. e, p.q hrf}]
8
9
10
1
12

17

Busca em Profundidade

Fronteira é uma pilha (LIFO)
-Xpandir o no mais profundo primeiro
» NOs do primeiro caminho

» NOs do segundo caminho
» NOs do terceiro caminho

> ...

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Propriedade da Busca em Profundidade

» Complexidade de tempo

No pior caso, tera que processar a arvore toda. Sejam
a profundidade total(finita)da arvore, a complexidade

de tempo ¢ O(b™)

)

» Complexidade de espaco

Armazena 0s irmaos de cada no no caminho até araiz,
portanto complexidade de espaco é O(bm)
1 Nivels
» Completo

Apenas se a arvore de busca for finita(ou usando
verificacao de ciclos).

» Otimo
Nao, ele a solucao mais a esquerda(recursivo)ou a
direita(iterativo), independente de custo

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

b fator de ramificacao

13

1 nod
b nos

b2 nos

b™nos

19

Algoritmo genérico de busca em arvore i

Os algoritmos de busca em arvore seguem a mesma estrutura geral:

A principal diferenca entre os
algoritmos ¢é a estratégia de

1. fronteira = [s] # Inicializar a fronteira com o estado inicial €Xpansao dono n;Usamos
diferentes estruturas de dados

def busca-arvore(s, g, A, T):

2. alcancado = {s} # Marcar ndé inicial como visitado baraimplementar essas

3. while fronteira ndo estiver vazia: estrategias.

4 . n = fronteira.pop() # Escolher um né da fronteira para eXpairasssee——— e
5. if n == g: # Verificar se o né n escolhido é o estado final g

0. return caminho entre s e g

7. for filho i1n T(n, A(n)): # Expandir o nd6 n escolhido usando funcdo de acdes A

10. i1f fi1lho not in alcancado:

11. fronteira.append(tfilho) alcancado é uma tabela hash (dicionario em python)

12. alcancado.append (filho) utilizada para evitar ciclos.

B e B

DCC192 - 2025/2 - Prof. Lucas N. Ferreira 20

Busca de custo uniforme (Algoritmo de Dijkstra) 4L

Fronteira @ uma fila de prioridade Tempo | No Fronteira (heap) Alcancado

-Xpandir o nd n com caminho de

1
menor custo g(n)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Busca de custo uniforme (Algoritmo de Dijkstra) i

Fronteira @ uma fila de prioridade

-Xpandir o nd n com caminho de
menor custo g(n)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

E—
Tempo No6 Fronteira (heap) Alcancado
1 BH(O) 6P{189), CL(100) OP(100), CL(100)
? OP(100) | GL(106), PN(180), TX(300) | OP(100), CL(100), PN(180), TX(300)
3 CL(100) PN(ISE) TX(300), PF(190) OP(100), CL(100), PN(180), TX(300),
PF(190)
4 PN(180), | TX(300), PFagey, Tx(215) | OP100) CLT00) PN(TB0), TX(215)
PF(190)
OP(100), CL(100), PN(180), TX(215),
H PF(190) TX(300), 2159, VIC(220) PF(190), VIC(220)
OP(100), CL(100), PN(180), TX(215),
6 TX(215) TX(300), H6(228) PF(190), VIC(220)
7 VIC(220) TX(300) OP(100), CL(100), PN(180), TX(215),

PF(190), VIC(220)

22

13

Busca de Custo Uniforme

def UCS(s, g, A, T, C):

1. heap = [(s, 0)]

2. alcancado = {s}

3. custol[s] = 0

4. while heap ndo estiver vazia:

5. n = heap.pop () # Escolher o n6é com menor prioridade (caminho) para expandir
6. if n == g: # Verificar se o nd n escolhido é o estado final g

7. return caminho entre s e g

8 . for filho in T(n, A(n)): # Expandir o ndé n escolhido usando funcado de acdes A
9. custo filho = custo[n] + C(n, filho) # Calcular custo de chegar ate o filho por n
10. i1f filho not i1n alcancado or custo filho < custo[filho]:

11. heap.push ((f1lho, custo filho))

12. alcancado.append(fi1lho)

13. custo[filho] = custo filho

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Problema da Busca de Custo Uniforme i

Considere sua execucao no seguinte problema de caminho minimo em grade (todos as acoes
tem custo 1):

Nesse caso, o UCS é igual a BFS e vai
expandir todos os nés até chegar no
estado final!

Azuis = Verdes — Amarelos — Vermelhos

T e ST

Como evitar expandir estados
claramente nao promissores?

= ST ———

DCC192 - 2025/1 - Prof. Lucas N. Ferreira 24

Funcao Heuristica 4L

Uma fungdo heuristica 4(n) : S = R™ recebe como entrada um estado n e retorna uma
estimativa da distanciaentrene g.

» Sao definidas de maneira particular para cada problema
de busca

» Por exemplo, para o problema de caminho mais curto,
duas funcoes muito utilizadas sao:

- Distancia Manhattan: i(n) = |x, — x,| + |y, — ¥, |

_ Distancia Euclidiana: /i(n) = \/ (x, — Xg)z +(V, — yg)z

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

25

Funcao Heuristica

7

Uma fungdo heuristica 4(n) : S = R™ recebe como entrada um estado n e retorna uma

estimativa da distanciaentrene g.

» Sao definidas de maneira particular para cada problema
de busca

» Por exemplo, para o problema de caminho mais curto,
duas funcoes muito utilizadas sao:

- Distancia Manhattan: i(n) = |x, — x,| + |y, — ¥, |

_ Distancia Euclidiana: /i(n) = \/ (x, — Xg)z +(V, — yg)z

DCC192 - 2025/1 - Prof. Lucas N. Ferreira

.10

4.12

3.16

2.24

1.41

20

Algoritmo A*

Fronteira € uma fila de prioridade
Expandir o no m com caminho de menor
custo g(n) e menor heuristica A(n), ou
seja, com menor g(n) + h(n)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Tempo

No

Fronteira (heap)

Alcancado

Iz

27

Algoritmo A*

Fronteira € uma fila de prioridade
Expandir o no m com caminho de menor
custo g(n) e menor heuristica A(n), ou
seja, com menor g(n) + h(n)

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

Iz

Tempo No6 Fronteira (heap) Alcancado

] S(0) c(6), h(6), I(6), mt4) s(0), c(1), h(1), 1(1), m(1)

, n(4) | o) (6)), (6) (e), ay | SO o LI) (2))

3 () c(6), h(6), I(6), I(6), n(6), a(6), | s(0), c(1), h(1), I(1), m(1), I(2), n(2),

x4, 1(6) r(2), q(3), x(3), t(3)

A «z) | ct6) h(B)16). I(6). n(6), q(B). | (), c(1), h(1). I1). m(1), I(2), n(2),

t(6), gt4), v(6), y(6) r(2), a(3), x(3), t(3), g(4), v(4), y(4)
q(4)

28

13

Algoritmo A*

def A star(s, g, A, T, C, h):

1. heap = [(s, h(s, g))]

2. alcancado = {s}

3. custo[s] = 0

4. while heap ndo estiver vazia:

5. n = heap.pop () # Escolher o Ultimo ndé da fila para expandir

0. if n == g: # Verificar se o nd n escolhido é o estado final g

7. return caminho entre s e g

8. for filho in T(n, A(n)): # Expandir o nd6 n escolhido usando funcdo de acdes A
9. custo filho = custo[n] + C(n, filho) # Calcular custo de chegar até o filho por n
10. if filho not 1in alcancado or custo filho < custo[filho]:

11. heap.push((fi1lho, custo filho + h(filho, g)))

12. alcancado.append (filho)

13. custo[filho] = custo filho

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

Contornos de Busca

Busca de custo uniforme Algoritmo A*

Expande principalmente em direcao ao estado
final, mas protege suas apostas para garantir a
otimizacao

Expande igualmente em todas as
direcoes.

DCC192 - 2025/1 - Prof. Lucas N. Ferreira https://www.redblobgames.com/pathfinding/a-star/introduction.html 30

13

NavMesh: Malha de Navegacao

Normalmente, em jogos 30, e dificil utilizar uma grida para representar bem 0 espaco de
navegacao do jogo. Nesses casos, e mais comum utilizar uma malha de navegacao:

» Cadatriangulo € um vertice no grafo e triangulos vizinhos possuem uma aresta entre si
» Dado um ponto qualgquer na malha, temos que calcular em que vertice ele percence

» Osalgoritmos de busca funcionam da mesma forma que na representacao em grade

corner.

centers

%

border
edges

DCC192 - 2025/1 - Prof. Lucas N. Ferreira 31

Proxima aula

A22: Comportamentos de Navegacao (Steering Behaviors)
» Procurar

» Fuaqir

» Passear

P Sequirum caminho

DCC192 - 2025/2 - Prof. Lucas N. Ferreira

13

52

