
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A21: IA — Pathfinding

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de aula

‣ Representação de Mapas em Jogos

‣ Busca em Largura e Profundidade

‣ Algoritmo de Djikstra

‣ Heurísticas e Algoritmo A*

2

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Pathfinding em Jogos
Em muitos jogos, precisamos mover objetos do jogos de maneira “inteligente”, incluindo
utilizando o menor caminho, desviando de obstáculos, seguindo outros objetos, etc.

3

Warcraf 1: Pathfinding para movimentação de unidades com o mouse

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Problemas de Busca no Espaço de Estados
Pathfinding é formalizado em IA como um problema de busca no espaço de estados:

‣ Conjunto de estados , chamado de espaço de estados

‣ Estado inicial

‣ Estado final

‣ Função de ações que retorna o conjunto finito de ações possíveis em

‣ Modelo de transição , uma função que retorna um novo estado resultado da
aplicação da ação no estado

‣ Função custo de ação que retorna o custo numérico da aplicação da ação no
estado para alcançar o estado

S

s ∈ S

g ∈ S

A(s) s

T(s, a) s′￼

a s

C(s, a, s′￼) a
s s′￼

4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Espaço de Estados
Em problemas de busca, o espaço de estados é geralmente representado como um grafo, onde
os vértices são os estados e as arestas são as ações:

5

‣ O conjunto de vértices é igual ao de estados

‣ O conjunto de arestas contém as ações

‣ Uma solução (caminho) é uma sequência de estados
 tal que , para todo na

sequência

‣ Um caminho é ótimo, também denotado como , se não existe
nenhum outro caminho entre e com custo menor que

S

A

C = {s, s1, s2, . . . , g} (si, si+1) ∈ A si
S

C C*
s g C

s

qp

h r

d
c

a

b

g

e
f

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Pathfinding: Espaços de Estados
As posições dos objetos em jogos constuman ser contínuas. Precisamos discretizar esse
espaço para fazer buscas eficientes. A técnica mais comum é utilizar um grid:

6

‣ Conjunto de estados : cada célula livre é um estado

‣ Estado inicial : a coordenada atual da unidade

‣ Estado final : a coordenada destino clicada pelo
jogador

‣ Função de ações : direções (up, down, left, …) das
coordenadas vizinhas de que estão livres

‣ Modelo de transição : a célula vizinha de
alcançada pela movimentação na direaçao de

‣ Função custo de ação : um valor real pré-
definido de se caminhar na grama vs. nas pedras (opcional)

S

s ∈ S (i, j)

g ∈ S

A(s)
s

T(s, a) s′￼ s
a

C(s, a, s′￼)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Pathfinding: Espaços de Estados
As posições dos objetos em jogos constuman ser contínuas. Precisamos discretizar esse
espaço para fazer buscas eficientes. A técnica mais comum é utilizar um grid:

7

x

c

s

y

d

n

i

v

b

l

h

q tr

a

k

f

p

c

o

j

u

e

Cada célula vazia é um vértice, onde células adjacentes
sem obstáculo entre si são conectadas via uma aresta

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Árvore de Busca
Em IA, os grafos do espaço de estados
geralmente não são armazenados em memória,
pois, na prática, costumam ser muito grandes.

8

Dizemos que os grafos representados por um estado
inicial e uma função sucessora são implícitos.

Ao invés disso, podemos aplicar a função do
modelo de transição para gerar uma
árvore de busca, começando pelo estado inicial.

T(s, a)

s

qp

h r

d
c

a

b

g

e
f

c

a

e

h r

p q

q

f

gc

a

p q

q

a

s

d e p

b c h r

f

g

q

a

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Árvore de Busca: Definições

‣ O estado inicial é a raiz da árvore;

‣ Um nó é expandido quando um algoritmo
considera as ações para aquele estado
chamando a função ;

‣ Um nó é gerado quando seu pai é expandido;

‣ O conjunto de caminhos produzidos até o
momento é chamado de fronteira;

‣ Um ciclo ocorre quando um nó aparece
múltiplas vezes em um mesmo caminho

 (e.g., S, A, E, C, A, E, G)

s
A(s)

9

c

a

e

h r

p q

q

f

gc

a

p q

q

a

s

d e p

b c h r

f

g

q

a

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Ciclos e caminhos redundantes

10

Ciclos são caminhos redundantes geram árvores de busca infinitas:
‣ Podemos evitar ciclos durante a busca com uma tabela de nós alcançados,

expandindo apenas aqueles que:
‣ Ainda não foram visitados ou;
‣ Estão sendo visitados por um caminho melhor.

s

qp

h r

d
c

a

b

g

e
f

s

d e p

b

a

d

d

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos de busca (que estudaremos)

‣ Busca sem informação

 Não possuem informação sobre a distância entre um determinado estado e o estado final

‣ Busca em largura (Breath-first search - BFS) — assume que ações todas tem o mesmo custo

‣ Busca em profundidade (Depth-first search- DFS) — assume que ações todas tem o mesmo custo

‣ Busca de custo uniforme (Algoritmo de Dijkstra - UCS) — assume ações com custo diferentes

‣ Busca informada

 Possuem informação sobre a distância entre um determinado nó e o estado final

‣ Algoritmo A*

e g

11

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca em Largura
Fronteira é uma fila (FIFO)
Expandir o nó mais raso primeiro
‣ Nós a uma aresta de distância (d, e, p)
‣ Nós a duas arestas de distância (b, c, h, r, q)
‣ Nós a três arestas de distância (a, f)
‣ …

12

Tempo Nó Fronteira (fila) Alcançado
1

2

3

4

5

6

7

8

9

10

11

12

s

qp

h r

d
c

a

b

g

e
f

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca em Largura
Fronteira é uma fila (FIFO)
Expandir o nó mais raso primeiro
‣ Nós a uma aresta de distância (d, e, p)
‣ Nós a duas arestas de distância (b, c, h, r, q)
‣ Nós a três arestas de distância (a, f)
‣ …

13

Tempo Nó Fronteira (fila) Alcançado
1 s [d, e, p] {s, d, e, p}

2 d [e, p, b, c] {d, e, p, b, c}

3 e [p, b, c, h, r] {d, e, p, b, c, h, r}

4 p [b, c, h, r, q] {d, e, p, b, c, h, r, q}

5 b [c, h, r, q, a] {d, e, p, b, c, h, r, q, a}

6 c [h, r, q, a] {d, e, p, b, c, h, r, q, a}

7 h [r, q, a] {d, e, p, b, c, h, r, q, a}

8 r [q, a, f] {d, e, p, b, c, h, r, q, a}

9 q [a, f] {d, e, p, b, c, h, r, q, a}

10 a [f, g] {d, e, p, b, c, h, r, q, a}

11 f [g] {d, e, p, b, c, h, r, q, a}

12 g [] {d, e, p, b, c, h, r, q, a}

s

qp

h r

d
c

a

b

g

e
f

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca em Largura
Fronteira é uma fila (FIFO)
Expandir o nó mais raso primeiro
‣ Nós a uma aresta de distância (d, e, p)
‣ Nós a duas arestas de distância (b, c, h, r, q)
‣ Nós a três arestas de distância (a, f)
‣ …

14

c

a

e

h r

p q

q

f

gc

a

p q

q

a

s

d e p

b c h r

f

g

q

a

s

qp

h r

d
c

a

b

g

e
f

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Propriedade da Busca em Largura
‣ Complexidade de tempo

Explora todos os nós acima da solução mais rasa — seja
a profundidade da solução mais rasa, a complexidade de
tempo é

‣ Complexidade de espaço
Armazena todos os nós até o nível antes da solução ,
portanto complexidade de espaço é

‣ Completo
Sim. Se existe uma solução, então é finito e a BFS vai
encontrá-la

‣ Ótimo
Sim, mas apenas se os custos forem uniformes (iguais a 1)

d

O(bd)

d g
O(bd)

d

15

s

g

 níveisd

g

 nó1

 nósb

 nósbd

 nósb2

 fator de ramificaçãob

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca em Profundidade
Fronteira é uma pilha (LIFO)
Expandir o nó mais profundo primeiro
‣ Nós do primeiro caminho
‣ Nós do segundo caminho
‣ Nós do terceiro caminho
‣ …

16

s

qp

h r

d
c

a

b

g

e
f

Tempo Nó Fronteira (pilha) Alcançado
1

2

3

4

5

6

7

8

9

10

11

12

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca em Profundidade
Fronteira é uma pilha (LIFO)
Expandir o nó mais profundo primeiro
‣ Nós do primeiro caminho
‣ Nós do segundo caminho
‣ Nós do terceiro caminho
‣ …

17

Tempo Nó Fronteira (pilha) Alcançado
1 s [d, e, p] {s, d, e, p}

2 p [d, e, q] {s, d, e, p, q}

3 q [d, e] {s, d, e, p, q}

4 e [d, h, r] {s, d, e, p, q, h, r}

5 r [d, h, f] {s, d, e, p, q, h, r, f}

6 f [d, h, g] {s, d, e, p, q, h, r, f}

7 g [d, h] {s, d, e, p, q, h, r, f}

8

9

10

11

12

s

qp

h r

d
c

a

b

g

e
f

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca em Profundidade
Fronteira é uma pilha (LIFO)
Expandir o nó mais profundo primeiro
‣ Nós do primeiro caminho
‣ Nós do segundo caminho
‣ Nós do terceiro caminho
‣ …

18

s

d e p

b c e h r

p q

q

f

g

q

c

a

a a h r

p q

q

f

gc

a

s

qp

h r

d
c

a

b

g

e
f

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Propriedade da Busca em Profundidade
‣ Complexidade de tempo

No pior caso, terá que processar a árvore toda. Seja
a profundidade total (finita) da árvore, a complexidade
de tempo é

‣ Complexidade de espaço
Armazena os irmãos de cada nó no caminho até a raiz,
portanto complexidade de espaço é

‣ Completo
Apenas se a árvore de busca for finita (ou usando
verificação de ciclos).

‣ Ótimo
Não, ele a solução mais à esquerda (recursivo) ou à
direita (iterativo), independente de custo

m

O(bm)

O(bm)

19

s

g
 níveism

g

 nó1

 nósb

 nósbm

 nósb2

 fator de ramificaçãob

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmo genérico de busca em árvore
Os algoritmos de busca em árvore seguem a mesma estrutura geral:

20

def busca-arvore(s, g, A, T):

 1. fronteira = [s] # Inicializar a fronteira com o estado inicial s

 2. alcancado = {s} # Marcar nó inicial como visitado

 3. while fronteira não estiver vazia:

 4. n = fronteira.pop() # Escolher um nó da fronteira para expandir

 5. if n == g: # Verificar se o nó n escolhido é o estado final g

 6. return caminho entre s e g

 7. for filho in T(n, A(n)): # Expandir o nó n escolhido usando função de ações A

 10. if filho not in alcancado:

 11. fronteira.append(filho)

 12. alcancado.append(filho)

A principal diferença entre os
algoritmos é a estratégia de
expansão do nó n; Usamos
diferentes estruturas de dados
para implementar essas
estratégias.

alcancado é uma tabela hash (dicionário em python)
utilizada para evitar ciclos.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca de custo uniforme (Algoritmo de Dijkstra)
Fronteira é uma fila de prioridade
Expandir o nó com caminho de
menor custo

n
g(n)

21

BH

OP

CL

PF

PN
VIC

TX

80

100

50

100

90

30

1535

200

Tempo Nó Fronteira (heap) Alcançado

1

2

3

4

5

6

7

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca de custo uniforme (Algoritmo de Dijkstra)
Fronteira é uma fila de prioridade
Expandir o nó com caminho de
menor custo

n
g(n)

22

Tempo Nó Fronteira (heap) Alcançado

1 BH(0) OP(100), CL(100) OP(100), CL(100)

2 OP(100) CL(100), PN(180), TX(300) OP(100), CL(100), PN(180), TX(300)

3 CL(100) PN(180), TX(300), PF(190) OP(100), CL(100), PN(180), TX(300),
PF(190)

4 PN(180), TX(300), PF(190), TX(215) OP(100), CL(100), PN(180), TX(215),
PF(190)

5 PF(190) TX(300), TX(215), VIC(220) OP(100), CL(100), PN(180), TX(215),
PF(190), VIC(220)

6 TX(215) TX(300), VIC(220) OP(100), CL(100), PN(180), TX(215),
PF(190), VIC(220)

7 VIC(220) TX(300) OP(100), CL(100), PN(180), TX(215),
PF(190), VIC(220)

BH

OP

CL

PF

PN
VIC

TX

80

100

50

100

90

30

1535

200

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Busca de Custo Uniforme

23

def UCS(s, g, A, T, C):

 1. heap = [(s, 0)]

 2. alcancado = {s}

 3. custo[s] = 0

 4. while heap não estiver vazia:

 5. n = heap.pop() # Escolher o nó com menor prioridade (caminho) para expandir

 6. if n == g: # Verificar se o nó n escolhido é o estado final g

 7. return caminho entre s e g

 8. for filho in T(n, A(n)): # Expandir o nó n escolhido usando função de ações A

 9. custo_filho = custo[n] + C(n, filho) # Calcular custo de chegar até o filho por n

 10. if filho not in alcancado or custo_filho < custo[filho]:

 11. heap.push((filho, custo_filho))

 12. alcancado.append(filho)

 13. custo[filho] = custo_filho

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Problema da Busca de Custo Uniforme

24

Considere sua execução no seguinte problema de caminho mínimo em grade (todos as ações
tem custo 1):

g

x

c

m

s

y

d

n

i

v

b

l

h

q tr

a

k

f

p

c

o

j

u

e

Como evitar expandir estados
claramente não promissores?

Nesse caso, o UCS é igual a BFS e vai
expandir todos os nós até chegar no
estado final!

Azuis Verdes Amarelos Vermelhos→ → →

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Função Heurística

25

‣ São definidas de maneira particular para cada problema
de busca

‣ Por exemplo, para o problema de caminho mais curto,
duas funções muito utilizadas são:

- Distância Manhattan:

- Distância Euclidiana:

h(n) = |xn − xg | + |yn − yg |

h(n) = (xn − xg)2 + (yn − yg)2

Uma função heurística recebe como entrada um estado e retorna uma
estimativa da distância entre e .

h(n) : S → ℝ+ n
n g

7 6 5 6 7

6 5 4 5 6

5 4 3 4 7

4 3 2 3 4

2 1 2

0

0

1

2

3

4

5

0 1 2 3 4

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Função Heurística

26

4

‣ São definidas de maneira particular para cada problema
de busca

‣ Por exemplo, para o problema de caminho mais curto,
duas funções muito utilizadas são:

- Distância Manhattan:

- Distância Euclidiana:

h(n) = |xn − xg | + |yn − yg |

h(n) = (xn − xg)2 + (yn − yg)2

Uma função heurística recebe como entrada um estado e retorna uma
estimativa da distância entre e .

h(n) : S → ℝ+ n
n g

5.39 5.10 5.00 5.10 5.39

4.47 4.12 4.00 4.12 4.47

3.61 3.16 3.00 3.16 3.61

2.83 2.24 2.00 2.24 2.83

1.41 1.00 1.41

0

0

1

2

3

4

5

0 1 2 3 4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmo A*
Fronteira é uma fila de prioridade
Expandir o nó com caminho de menor
custo e menor heurística , ou
seja, com menor

n
g(n) h(n)

g(n) + h(n)

27

< >5 < >6 < >7< >6< >7

g

x

c

m

s

y

d

n

i

v

b

l

h

q tr

a

k

f

p

o

j

u

e

< >3

< >2

< >1

< >0

< >4 < >5

< >4

< >3

< >2

< >4

< >5

< >6

< >2

< >5

< >4

< >3< >4

< >5

< >6

Tempo Nó Fronteira (heap) Alcançado

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmo A*
Fronteira é uma fila de prioridade
Expandir o nó com caminho de menor
custo e menor heurística , ou
seja, com menor

n
g(n) h(n)

g(n) + h(n)

28

< >5 < >6 < >7< >6< >7

g

x

c

m

s

y

d

n

i

v

b

l

h

q tr

a

k

f

p

o

j

u

e

< >3

< >2

< >1

< >0

< >4 < >5

< >4

< >3

< >2

< >4

< >5

< >6

< >2

< >5

< >4

< >3< >4

< >5

< >6

Tempo Nó Fronteira (heap) Alcançado

1 S(0) c(6), h(6), I(6), m(4) s(0), c(1), h(1), I(1), m(1)

2 m(4) c(6), h(6), I(6), l(6), n(6), r(4) s(0), c(1), h(1), I(1), m(1), l(2), n(2),
r(2)

3 r(4) c(6), h(6), I(6), l(6), n(6), q(6),
x(4), t(6)

s(0), c(1), h(1), I(1), m(1), l(2), n(2),
r(2), q(3), x(3), t(3)

4 x(4) c(6), h(6), I(6), l(6), n(6), q(6),
t(6), g(4), v(6), y(6)

s(0), c(1), h(1), I(1), m(1), l(2), n(2),
r(2), q(3), x(3), t(3), g(4), v(4), y(4)

g(4)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmo A*

29

def A_star(s, g, A, T, C, h):

 1. heap = [(s, h(s, g))]

 2. alcancado = {s}

 3. custo[s] = 0

 4. while heap não estiver vazia:

 5. n = heap.pop() # Escolher o último nó da fila para expandir

 6. if n == g: # Verificar se o nó n escolhido é o estado final g

 7. return caminho entre s e g

 8. for filho in T(n, A(n)): # Expandir o nó n escolhido usando função de ações A

 9. custo_filho = custo[n] + C(n, filho) # Calcular custo de chegar até o filho por n

 10. if filho not in alcancado or custo_filho < custo[filho]:

 11. heap.push((filho, custo_filho + h(filho, g)))

 12. alcancado.append(filho)

 13. custo[filho] = custo_filho

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Contornos de Busca

30

g

s
g

s

Expande igualmente em todas as
direções.

Expande principalmente em direção ao estado
final, mas protege suas apostas para garantir a
otimização

Busca de custo uniforme Algoritmo A*

https://www.redblobgames.com/pathfinding/a-star/introduction.html

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

NavMesh: Malha de Navegação
Normalmente, em jogos 3D, é difícil utilizar uma grida para representar bem o espaço de
navegação do jogo. Nesses casos, é mais comum utilizar uma malha de navegação:

31

‣ Cada triângulo é um vértice no grafo e triângulos vizinhos possuem uma aresta entre si

‣ Dado um ponto qualquer na malha, temos que calcular em que vértice ele percence

‣ Os algoritmos de busca funcionam da mesma forma que na representação em grade

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A22: Comportamentos de Navegação (Steering Behaviors)

‣ Procurar

‣ Fugir

‣ Passear

‣ Seguir um caminho

32

