
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A23: Geração Procedural de Conteúdo

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula
‣ Histórico

‣ Métodos Construtivos

‣ Funções de Ruído

‣ Gramáticas Generativas

‣ Métodos Baseados em Busca

‣ Algoritmos Evolutivos

‣ Métodos Baseados em Aprendizado

2

3

Rogue (1980s)
UC Santa Cruz/Berkeley
Micheal Toy, Glenn Wichman, Ken Arnold
BSD

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅ 4

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅ 4

Regras

‣ 9 áreas iguais
‣ 1 sala / área
‣ Salas Retângulares

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅ 4

Restrições

‣ largura sala ≥ 3
‣ altura sala ≥ 3

Sala 1

‣ p = (5, 3)

p

‣w = 3 + 2 = 5
‣ h = 3 + 1 = 4

Regras

‣ 9 áreas iguais
‣ 1 sala / área
‣ Salas Retângulares

Aleatoriedade

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅ 4

Restrições

‣ largura sala ≥ 3
‣ altura sala ≥ 3

Sala 1

‣ p = (5, 3)
‣w = 3 + 2 = 5
‣ h = 3 + 1 = 4

Regras

‣ 9 áreas iguais
‣ 1 sala / área
‣ Salas Retângulares

Aleatoriedade

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅ 4

Restrições

‣ largura sala ≥ 3
‣ altura sala ≥ 3

Sala 1

‣ p = (5, 3)
‣w = 3 + 2 = 5
‣ h = 3 + 1 = 4

Regras

‣ 9 áreas iguais
‣ 1 sala / área
‣ Salas Retângulares

Aleatoriedade

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅ 4

Restrições

‣ largura sala ≥ 3
‣ altura sala ≥ 3

Sala 1

‣ p = (5, 3)
‣w = 3 + 2 = 5
‣ h = 3 + 1 = 4

Regras

‣ 9 áreas iguais
‣ 1 sala / área
‣ Salas Retângulares

Aleatoriedade

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Roguelikes

5

O Rogue foi um jogo tão influente que ele deu início a um gênero de jogos chamado de
roguelikes, caracterizado por níveis gerados proceduralmente e morte permamente.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Histórico

6

Rogue (1980)
Geração de Masmorras

1980’s 2000’s 2020's

Rogue

1990’s 2010's

Motivações

‣ Limitação de recursos computacionais

‣ Acelerar o processo de desenvolvimento

‣ “Rejogabilidade"

Desde o Rogue, nos anos 80, a indústria de jogos passou a utilizar geração procedural de
conteúdo com diferentes motivações:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Histórico

6

1980’s

Diablo

2000’s 2020's

Minecraft

Rogue
Elite

1990’s

Spore

2010's

Spelunky

Borderla
nds

Minecraft (2009)
Geração do Mundo

Motivações

‣ Limitação de recursos computacionais

‣ Acelerar o processo de desenvolvimento

‣ “Rejogabilidade"

Desde o Rogue, nos anos 80, a indústria de jogos passou a utilizar geração procedural de
conteúdo com diferentes motivações:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Histórico

6

1980’s

Diablo

2000’s 2020's

Minecraft

Rogue
Elite

1990’s

Spore
No Man’s Sky

2010's

Spelunky

Borderla
nds

Bliz
zard’s

Diff
usion

Blizzard’s Diffusion (2023)
Arte Conceitual

Motivações

‣ Limitação de recursos computacionais

‣ Acelerar o processo de desenvolvimento

‣ “Rejogabilidade"

Desde o Rogue, nos anos 80, a indústria de jogos passou a utilizar geração procedural de
conteúdo com diferentes motivações:

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Geração Procedural de Conteúdo
Geração procedural de conteúdo (do inglês, PCG) são métodos para gerar conteúdo
automaticamente ou semi-automaticamente, ao invés de produzi-los manualmente:

‣ Métodos Construtivos

Quando sabemos criar regras para definir como o conteúdo deve construído

‣ Métodos Baseados em Busca

Quando não é fácil criar regras, mas sabemos avaliar se o conteúdo é bom ou ruim

‣ Métodos Baseados em Aprendizado

Quando não é fácil criar regras, nem avaliar, podemos inferir padrões em bases de conteúdos

7

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

O que é conteúdo?
Em PCG, conteúdo geralmente é tudo aquilo que está contido no jogo, excluindo a IA dos NPCs :

‣ Texturas: padrões naturais (cascalho, lava, tecidos, …)

‣ Modelos 3D: veículos, items, personagens, …

‣ Níveis: plataformas, masmorras, …

‣ Mundos: mapas, florestas, cidades, galaxias, …

‣ Música: adaptativa, simbólico, áudio, …

‣ Narrativas: quests, histórias, diálogos, …

‣ Propriedades: nome, atributos, cores, …

‣ …

8

A IA dos NPCs é excluída por ser um campo de aplicação e pesquisa clássicos de IA em jogos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Métodos Construtivos
Métodos construtivos são todos aqueles onde aplicamos regras explícitas (possivelmente
estocásticas) para definir como o conteúdo deve ser construído. Por exemplo:

9

3. Autômatos Celulares

Ex. Cavernas

2. Gramatica Generativa

Ex.: Árvores

1. Funções de Ruído

Ex.: Terrenos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Funções de Ruído
Geradores de números aleatórios produzem sequências de números sem um padrão
discernível, aproximando uma distribuição uniforme:

10

Funções de ruído produzem sequências com um padrão discernível, onde um elemento da
sequência depende dos seus vizinhos:

tempoxx-1 x+1

xx-1 x+1 tempo

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Ruído de Perin (Perlin Noise)

Criado por Ken Perlin nos anos 80

Gerar texturas realistas para o filme Tron, ganhando um Oscar (1997)
em technical achievement

11

Em PCG, o Ruído Perlin é principalmente utilizado para
gerar modelos 3D e texturas com qualidades naturais:

‣ Modelos 3D: Terrenos, Água, Explosões, …

‣ Texturas: Nuvem, Cascalho, Mármore, …

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Ruído de Perin (Perlin Noise)
O ruído de perlin é uma função que recebe uma coordenada no espaço de ruído e retorna um
número aleatório , geralmente em [0,1], ou [-1, 1]:

x
p

12

p = perlin(x)

‣ O ruído de perlin 1D pode ser visto como uma sequência
contínua de valores ao longo do tempo.

‣ Especifique um "momento no tempo" para acessar
um valor de ruído p = perlin(x).

‣ O valor de p no tempo está relacionado aos valores nos
tempos vizinhos e .

x ∈ ℝ

x
x − 1 x + 1

https://p5js.org/reference/p5/noise/

Por exemplo:
perlin(10) // p: 0.47
perlin(15) // p: 0.54
perlin(22) // p: 0.50

tempoxx-1 x+1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Ruído de Perin (Perlin Noise)
O ruído de perlin é uma função que recebe uma coordenada no espaço de ruído e retorna um
número aleatório , geralmente em [0,1], ou [-1, 1]:

x
p

13

p = perlin(x,y)

‣ O ruído de perlin 2D pode ser visto como uma grade
bidimensional de valores contínuos.

‣ Especifique uma posição para acessar um valor
de ruído p = perlin(x, y).

‣ O valor p na coordenada será semelhante a todos os
seus vizinhos: acima, abaixo, à direita, à esquerda e ao
longo das diagonais.

(x, y) ∈ ℝ2

(x, y)
Por exemplo:
perlin(3,6) // p: 0.47
perlin(3,7) // p: 0.54
perlin(4,7) // p: 0.50

https://www.redblobgames.com/maps/terrain-from-noise/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Ruído de Perin (Perlin Noise)
O ruído de perlin é uma função que recebe uma coordenada no espaço de ruído e retorna um
número aleatório , geralmente em [0,1], ou [-1, 1]:

x
p

14

p = perlin(x,y,z)

‣ O ruído de perlin 3D pode ser visto como uma grade
tridimensional ou como um ruído 2D onde a terceira
coordenada é o tempo.

‣ Especifique uma posição e um valor de
 no espaço ou tempo para acessar um valor p =

perlin(x, y, z).

‣ O valor p na coordenada será semelhante a todos os
seus vizinhos 3D ou ao longo do tempo .

z

(x, y) ∈ ℝ2

z ∈ ℝ

(x, y)
z

Por exemplo:
perlin(3,6,0.1) // p: 0.47
perlin(3,7,0.2) // p: 0.54
perlin(4,7,0.2) // p: 0.50

https://www.redblobgames.com/maps/terrain-from-noise/

t = 0.1 t = 0.2 t = 0.3

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Gramáticas Generativas
Gramáticas Generativas são um conjunto de regras de produção para manipulação de strings.
Elas possuem os seguintes componentes:

15

Exemplo:

Símbolos Terminais
{ a, b }

Símbolos Não Terminais
{A, B}

Regras de Produção
1.A -> AB
2.B -> b

‣ Símbolos:

‣ Terminal: Caracteres do alfabeto

‣ Não Terminal: Tokens para padrões de símbolos terminais.

‣ Regras de produção
Regras para mapear símbolos não terminais em uma string.

‣ Axioma
Uma string inicial a ser expandida com as regras de produção.

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Gramáticas Generativas
Para gerar uma string a partir de uma gramática gerativa:

16

1. Considere um número máximo N de transformações

Por exemplo, N = 4

2. Considere uma string inicial S0 = axiom
Por exemplo, S0 = A

3. Para i = 0 .. N:

 2.1 Substitua cada símbolo não terminal de Si pelo
 lado direito das regras de produção correspondentes.

2.2 Faça si+1 ser o resultado da instrução 2.1

s0= A, s1= AB, s2= ABb, s3= ABbb, s4= ABbbb

Exemplo:

Símbolos Terminais
{ a, b }

Símbolos Não Terminais
{A, B}

Regras de Produção
1.A -> AB
2.B -> b

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

F

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

F
F[+F]F[-F]F

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

F
F[+F]F[-F]F

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

F
F[+F]F[-F]F

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

F
F[+F]F[-F]F

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

F
F[+F]F[-F]F

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

L-Systems

Regras de produção
F F[+F]F[-F]F→

Símbolos não-terminais
F: Desenha linha e move
G: Move(sem desenhar)

Símbolos terminais
+: Virar à direita Θ graus
-: Virar à esquerda Θ graus
[: Salvar localização atual
]: Restaurar localização anterior

17

F
F[+F]F[-F]F

Em 1968, o botânico húngaro Aristid Lindenmayer desenvolveu um sistema baseado em
gramática para modelar os padrões de crescimento das plantas.

https://www.kevs3d.co.uk/dev/lsystems/

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Métodos Baseados em Busca
Métodos Baseados em Busca exploram um espaço de conteúdo, buscando por aqueles de
melhor qualidade. Por exemplo:

18

2. Algoritmos Evolutivos

Ex.: Níveis ou Mapas

1. Busca no Espaço de Estados

Ex.: Labirintos

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos
Algoritmos genéticos são algoritmos de busca local inspirados na teoria da seleção natural da
Biologia, eles "evoluem" uma população de indivíduos segundo uma função de adaptação : x f

19

1. Indivíduo
 Arranjo de bits (0/1)x →

2. Avaliação

‣ Menor caminho entre s e ga(x) →
‣ Simetria do mapab(x) →
‣ Nº de blocos no mapac(x) →

f(x) = w1a(x) + w2b(x) + w3c(x)

Por exemplo, considere o problema de gerar mapas simétricos no League of Legends:

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0

0 1 1 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 1 1 0

0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

N

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

N

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover 5. Mutação2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

1 0 1 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover 5. Mutação2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

1 0 1 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover 5. Mutação2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

1 0 1 1

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover 5. Mutação2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

1 0 10

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover 5. Mutação2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

1 0 10

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover 5. Mutação2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

1 0 1

1 1 1 1

0

N

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Algoritmos Evolutivos

https://natureofcode.com/genetic-algorithms/

A evolução começa com uma Inicialização e segue em uma repetição de: Avaliação Seleção Crossover Mutação→ → →

20

1. Inicialização 3. Seleção 4. Crossover 5. Mutação2. Avaliação

0.2

0.7

1.0

0.5

1.0

0.2

0.5

Função de adaptação

1 0 1 0

1 1 1 0

1 0 1 1

0 0 1 0

1 0 1 1

0 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

0 0 1 0

N 2N

1 0 1 1

1 1 1 1
N

1 0 1

1 1 1 1

0

N

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Aplicações: Reestilização de imagens

‣ Imagens representadas por polígonos

‣ Função de adaptação direta que calcula a
distância pixel-a-pixel entre o fenótipo do
indivíduo e a imagem objetivo

‣ Exemplo:
https://chriscummins.cc/s/genetics/

21

https://chriscummins.cc/s/genetics/
https://www.youtube.com/watch?v=x1UD7chLonE

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Aplicações: Geração de criaturas

‣ Criaturas representadas por sólidos
geométricos

‣ Função de adaptação baseada em
simulação medindo o quanto a criatura
se moveu

‣ Exemplo:
https://rednuht.org/genetic_cars_2/

22Sims, K. (2023). Evolving virtual creatures. In Seminal Graphics Papers:
Pushing the Boundaries, Volume 2 (pp. 699-706).

https://www.youtube.com/watch?v=JBgG_VSP7f8

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Aplicação: Galactic Arms Race

‣ Jogo MMO de Batalha

‣ Evolução de armas representadas como
sistemas de partículas

‣ Função de adaptação interativa, onde a
qualidade das armas é medida pelo
tempo que os usuário as utilizam

https://store.steampowered.com/app/
249610/Galactic_Arms_Race/

23
Hastings, E.J., Guha, R.K. and Stanley, K.O., 2009, September. Evolving
content in the galactic arms race video game. In 2009 IEEE Symposium on
Computational Intelligence and Games (pp. 241-248). IEEE.

https://www.youtube.com/watch?v=JkniSUXa8-I

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Métodos Baseados em Aprendizado
Os métodos baseados em aprendizado inferem uma distribuição de probabilidade de um
determinado conjunto de dados de conteúdo e amostram a partir dessa distribuição.

24

3. Redes Neurais Artificiais (RNAs)

Ex. Imagens, Texto, Música, ….

2. Wave Function Collapse

Ex.: Texturas e Mapas

1. Modelos de Markov

Ex.: Nomes

Elara Brightblade

Isolde Fireheart

Liana Moonshadow

Thalissa Stormrider

Sylas Blackthorn

Evaine Whitewing

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

IA Generativa
Atualmente, PCG está centrado em RNAs e, particularmente em Large Language Models (LLMs),
pois eles podem gerar conteúdo dos mais diversos com qualidade impressionante:

25

Nomes

Elara Brightblade

Isolde Fireheart

Liana Moonshadow

Thalissa Stormrider

Sylas Blackthorn

Arte Conceitual

Concept art for a female human D&D character;
warrior; brave; 4k, hand drawn, sketch

Generate a list of female human D&D
characters

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A24: Narrativas
‣ Cutscenes

‣ Sistemas de Quests

26

