
DCC192

Prof. Lucas N. Ferreira

Desenvolvimento de Jogos Digitais

2025/2

A24: Cutscenes e Narrativas

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Plano de Aula
‣ Cutsenes

‣ Pré-renderizadas

‣ Renderizadas em Tempo Real

‣ Hardcoded

‣ Interpretadores

‣ Editores Gráficos

‣ Sistemas de Missões

‣ Representação

‣ Finalizando Eventos

2

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Cutscenes
Uma cutscene é uma sequência de quadros rotereizada em que o controle do jogador é
temporariamente reduzido ou removido para transmitir a narrativa do jogo.

3

Super Mario Bros:
Cutscene de final de fase

Hollow Knight:
Cutscene de Introdução

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Cutscenes Pré-Renderizadas
A forma mais simples de incluir cutscenes é utilizando vídeos (ex., mp4, wmv, mov)
renderizados antecipadamente ou filmados e reproduzidos como um filme durante o jogo.

4

void Initialize() {
 ...
 M = LoadMovie(“movie.mp4");
 ...

}

void Input() {
 ...
 PlayMovie(m);
 ...

}

Screenshot do Adobe Premier:
Ferramenta de Edição de Vídeos

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Cutscenes Pré-Renderizadas

5

Pros

‣ Alta qualidade visual: pode ter uma aparência melhor do que gráficos em tempo real.

‣ Desempenho estável: não sobrecarrega a execução do jogo durante a reprodução.

‣ Liberdade de criação: possibilita uso de ferramentas externas de produção cinematográfica.

‣ Consistência entre plataformas: o vídeo tem a mesma aparência em todos os dispositivos.

Contras

‣ Tamanhos de arquivo grandes: vídeos de alta qualidade podem aumentar demais o tamanho do jogo.

‣ Baixa interatividade: não pode refletir as escolhas do jogador ou o estado do jogo.

‣ Quebra no estilo visual: pode parecer muito diferente dos gráficos do jogo.

‣ Desafios de localização: mais difícil de adicionar legenda ou dublar após a produção.

‣ Sem conteúdo dinâmico: não é possível reagir ao inventário, escolhas ou estatísticas.

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Sistema de Cutscenes em Tempo Real
A maioria dos jogos modernos utilizam cutsecenes renderizados em tempo real. Sendo assim,
a Engine deve dar suporte à criação de cenas roteirizadas. Os principais componentes:

6

1. Mecanismo de Acionamento (Trigger)

2. Sequenciador de Eventos:

‣ Controle de Câmera: movimentação, efeitos (zoom, shake, …)

‣ Controle de Personagens: movimentação, animações

‣ Sistema de diálogo: legendas

‣ Sistema de som: música de fundo, efeitos sonros

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Implementação de Cutscenes em Tempo Real
Existem três abordagens principais de implementação de cutscenes em tempo real ,
dependendo da complexidade do jogo e das funcionalidades/flexibilidade desejada:

1. Cutscenes Hardcoded
Sequências escritas manualmente diretamente no código do jogo.

7

if (mIsOnPole) {
 // If Mario is on the pole, update the pole slide timer
 mPoleSlideTimer -= deltaTime;
 if (mPoleSlideTimer <= 0.0f) {
 mRigidBodyComponent->SetApplyGravity(true);
 mRigidBodyComponent->SetApplyFriction(false);
 mRigidBodyComponent->SetVelocity(Vector2::UnitX * 100.0f);
 mGame->SetGamePlayState(Game::GamePlayState::Leaving);

 mGame->GetAudio()->PlaySound("StageClear.wav");
 mIsOnPole = false;
 mIsRunning = true;
 }
}

Por exemplo, cutscene do Mario descendo o mastro no final das fases do SMB:

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Implementação de Cutscenes em Tempo Real
Existem três abordagens principais de implementação de cutscenes em tempo real,
dependendo da complexidade do jogo e das funcionalidades/flexibilidade desejada:

2. Interpretador de Cutscenes
As cutscenes são definidas em arquivos externos (JSON, XML, YAML, …) e interpretadas por
um sequenciador de eventos, que controla o fluxo de execução dos eventos.

8

[
{"event": "wait", "duration": 2},
{"event": "move", "target": "npc1", "to": [5, 3], "duration": 2},
{"event": "say", "target": "npc1", "text": "We're too late..."},
{"event": "pan_camera", "to": "burned_house", "duration": 1},
{"event": "wait", "duration": 2},

]

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Implementação de Cutscenes em Tempo Real
Existem três abordagens principais de implementação de cutscenes em tempo real ,
dependendo da complexidade do jogo e das funcionalidades/flexibilidade desejada:

3. Ferramentas de Sequênciamento Visual
As cutscenes são definidas por editor gráficos e interpretadas por um sequenciador de
eventos, que controla o fluxo de execução dos eventos.

9

Screenshot do Unity Timeline:
Subsistema de Cutscenes da Unity

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Implementando um Interpretador de Cutscenes
Para implementar um interpretador de cutscenes, devemos primeiro definir como um
cutscene é representada. A forma mais simples é utilizar uma lista de eventos:

10

class CutsceneEvent
{
public:
 virtual ~CutsceneEvent() {}
 virtual void Start() = 0;
 virtual void Update(float deltaTime) = 0;
 virtual bool IsFinished() const = 0;

protected:
 float mDuration;
 float mElapsed;
};

class MoveEvent : public CutsceneEvent {
public:
 MoveEvent(Actor* obj, const Vector2
&destination, float seconds);

 void Start() override;
 void Update(float dt) override;
 bool IsFinished() const override;

Private:
 Actor* mTarget;
 Vector2 mStart, mEnd;
};

1. Classe abstrata CutsceneEvent para
especificar a estrutura mínima de um evento:

2. Especializamos a classe base para definir
eventos específicos. Por exemplo:

Eventos possuem minimamente um tempo de duração

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Implementando um Interpretador de Cutscenes
Após definir os eventos, podemos criar uma classe CutScenePlayer parar ler e tocar as
cutsecenes definidas em arquivos:

11

class CutscenePlayer
{
public:
 void Start(const std::string& cutscene);
 void Update(float dt);
 void ReadCutscene(const std::string& fileName);
 bool IsPlaying() const { return mIsPlaying; }

private:
 size_t mCurrent = 0;
 bool mIsPlaying = false;

 // List of scheduled events
 std::vector<std::unique_ptr<CutsceneEvent>> mEvents;
};

‣ Start(): começa a tocar uma
determinada cutscene

‣ Update(): gerencia início e término de
eventos em uma cutscene.

‣ ReadCutscene(): lê arquivo texto
estruturado (ex. json) definindo cutscenes

‣ IsPlaying(): Verifica se uma cutsene
está tocando

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Narrativas

12

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Missões
Muitos jogos são estruturados em missões (quests), que são tarefas ou objetivos dados ao
jogador para avançar na história, subir de nível, ou obter recompensas. Por exemplo:

13

Exemplos de missões:

- Matar todos os inimigos de uma área

- Coletar um item raro

- Salvar um personagem importante

- …

Diablo II Resurrected - Ato 1 Quest 1: Den of Evil

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Os atributos de uma missão
Uma missão possui, minimamente um identificador único, um nome, uma descrição, uma lista
de pré-requisitos (outras quests) e um estado, que pode ser um dos seguintes:

14

enum class QuestState {
NotStarted,
InProgress,
Completed,
Failed

};

struct Quest {
 std::string id;
 std::string name;
 std::string description;
 QuestState state = QuestState::NotStarted;

 // Quest IDs

 std::vector<std::string> prerequisites;
};

1. Não iniciada
A missão ainda não foi iniciada.

2. Em execução
O jogador aceitou essa quest e está em progresso.

3. Concluída
O jogador termiou essa quest com sucesso.

4. Fracassada
O jogador termiou essa quest sem sucesso.

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Os métodos de uma missão
Uma missão também precisa ter métodos para verificar as condições de início (1) e fim (2) e de
callbacks para atualizar o estado do jogo durante o seu início (3) e conclusão (4):

15

enum class QuestState {
NotStarted,
InProgress,
Completed,
Failed

};

struct Quest {
 std::string id;
 std::string name;
 std::string description;
 QuestState state = QuestState::NotStarted;

 std::vector<std::string> prerequisites;
 std::function<bool()> startCondition;
 std::function<bool()> completionCondition;
 std::function<void()> onStart;
 std::function<void()> onComplete;
};

1. Responder se ela pode ser iniciada
Ex.: Conversou com a vendedora de poções.

2. Responder se ela já foi concluída
Ex.: Verificar se os monstros foram mortos.

3. Modificar estado do jogo no início da missão
Ex.: Atualizar ponto de destino no mapa.

4. Modificar estado do jogo no final da missão
Ex.: Dar uma recompensa para o jogador.

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Gerenciador de Missões
O gerenciador de missões é uma estrutura de dados tipicamente implementada como um mapa
de quests indexadas por IDs (ex. strings).

16

private:
// Lista de quests
std::unordered_map<std::string, Quest> quests;

public:
bool AddQuest(const Quest& quest) const;
const Quest* GetQuest(const std::string& id) const;
void Update(float deltaTime);

private:
bool ArePrerequisitesMet(const Quest& quest) const;

Essa estrutura deve verificar o estado de todas as quests do jogo:

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Gerenciador de Missões - Udpate
O método update verifica continuamente o estado das quests adicionadas:

17

void update()
{
 for (auto& [id, quest] : quests) {
 if (quest.state == QuestState::NotStarted && arePrerequisitesMet(quest) && quest.startCondition()) {
 quest.state = QuestState::InProgress;
 if (quest.onStart) quest.onStart();
 }

 if (quest.state == QuestState::InProgress && quest.completionCondition()) {
 quest.state = QuestState::Completed;
 if (quest.onComplete) quest.onComplete();
 }
 }
}

‣ Se uma quest não foi começada, mas tem seus pre-requisitos e condição de início satisfeitos, ela será iniciada!

‣ Se uma quest está em progresso e tem sua condição de término satisfeita, ele será completada!

‣ Uma lógica similar pode ser usada para lidar com missões fracassadas

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Gerenciador de Missões - Verificar Pré-requisitos
O método de verificação de pré-requisitos apenas percorre a lista de pré-requisitos de uma
determinar quest e verifica se o estado de alguma delas não é concluído:

18

bool arePrerequisitesMet(const Quest& quest) const
{
 for (const auto& prereq : quest.prerequisites) {
 auto it = quests.find(prereq);
 if (it == quests.end() || it->second.state != QuestState::Completed)
 return false;
 }
 return true;
}

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Exemplo
Vamos ver um exemplo de como uma criar uma quest simples usando esse sistema:

19

QuestManager questManager;

// Simulated game state variables
bool talkedToNPC = false;
bool defeatedBoss = false;

Quest quest {
 .id = "rescue_villager",
 .name = "Rescue the Villager",
 .description = "A villager is trapped in the dungeon. Talk to the guard to begin.",
 .startCondition = [&]() { return talkedToNPC; },
 .completionCondition = [&]() { return defeatedBoss; },
 .onStart = []() {
 std::cout << "Quest started: Rescue the Villager!\n";
 },
 .onComplete = []() {
 std::cout << "Quest completed: You rescued the villager and gained 500 XP.\n";
 }
};

questManager.addQuest(quest);

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Sistema de Eventos
As condições de início e término de uma missão podem ser das mais variadas possíveis. Por
exemplo, no Diablo II, quests são geralmente iniciadas quando o jogador:

‣ Entra em uma área;

‣ Mata uma chefe;

‣ Fala com um NPC;

‣ Pega um item;

20

Para facilitar a verificação dessas condições, você pode utilizar um
sistema de eventos, que manda mensagens quando eventos acontecem!

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Sistema de Eventos
O sistema de eventos dispara eventos, armazenados em uma lista, que podem ser utilizados
pelo sistema de quest para verificar condições de início e fim:

21

enum class GameEventType {
EnterZone,
KillEnemy,
TalkToNPC,
PickItem

};

struct GameEvent {
 GameEventType type;
 std::string data; // e.g., zone name, enemy id
};

std::vector<GameEvent> eventQueue;

// Example condition using event queue
auto bossDefeated = []() {
 return std::find_if(eventQueue.begin(), eventQueue.end(), [](const GameEvent& e) {
 return e.type == GameEventType::KillEnemy && e.data == "Andariel";
 }) != eventQueue.end();
};

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Integração com NPCs
Para integrar o sistema de missões com os diálogos dos NPCs, podemos definir uma lista de
missões relacionadas com cada NPC e tratar o diálogo caso a caso:

22

class NPC {
public:
 std::vector<std::string> relatedQuests;
 void onTalk(QuestManager& questManager) {
 for (const auto& questId : relatedQuests) {
 const Quest& quest = questManager->GetQuest(questId);
 switch (quest.state) {
 case QuestState::NotStarted:
 std::cout << name << ": I have a task for you. Will you help?\n”;
 eventQueue.push_back({ GameEventType::TalkToNPC, id });
 return;
 case QuestState::InProgress:
 std::cout << name << ": Have you finished what I asked?\n";
 return;
 case QuestState::Completed:
 std::cout << name << ": Thank you, brave hero!\n";
 return;
 default:
 break;
 }
 }
 }
};

DCC192 2025/1 Prof. Lucas N. Ferreira⋅ ⋅

Salvando o Jogo
Em jogos digitais, é comum que jogadores possam salvar o jogo, ou seja, armazenar seu
progresso em memória externa, permitindo que ele retome o jogo de onde parou.

23

{
 "player": {
 "name": "Hero123",
 "level": 12,
 "experience": 34560,
 "position": {
 "x": 100,
 "y": 250
 }
 },
 "quests": [
 {
 "id": "slay_skeleton_king",
 "state": "Completed"
 },
 {
 "id": "rescue_villager",
 "state": "InProgress"
 }
],
 "inventory": [
 {
 "item": "HealthPotion",
 "quantity": 5
 },
 {
 "item": "ManaPotion",
 "quantity": 3
 },
]
}

Você deve definir, enquanto designer, quais variáveis quer salvar:

‣ Nível do jogado, experiência, pontos, dinheiro, …

‣ Posições no mundo

‣ Estado das missões

‣ Inventário

‣ …

Você pode salvar o jogo:

‣ Em um arquivo texto estruturado (ex. json);

‣ Em um arquivo em formato binário (mais seguro!)

‣ Em um banco de dados! (principalmente em jogos online)

DCC192 2025/2 Prof. Lucas N. Ferreira⋅ ⋅

Próxima aula
A25: Jogos em Rede
‣ Protocolos de Rede

‣ Topologias de Rede

‣ Cheating

24

