INF721

2024/2

Deep Learning

L7: Evaluting Neural Networks

Logistics

Announcements

▶ PA2: Multilayer Perceptorn is out!

Last Lecture

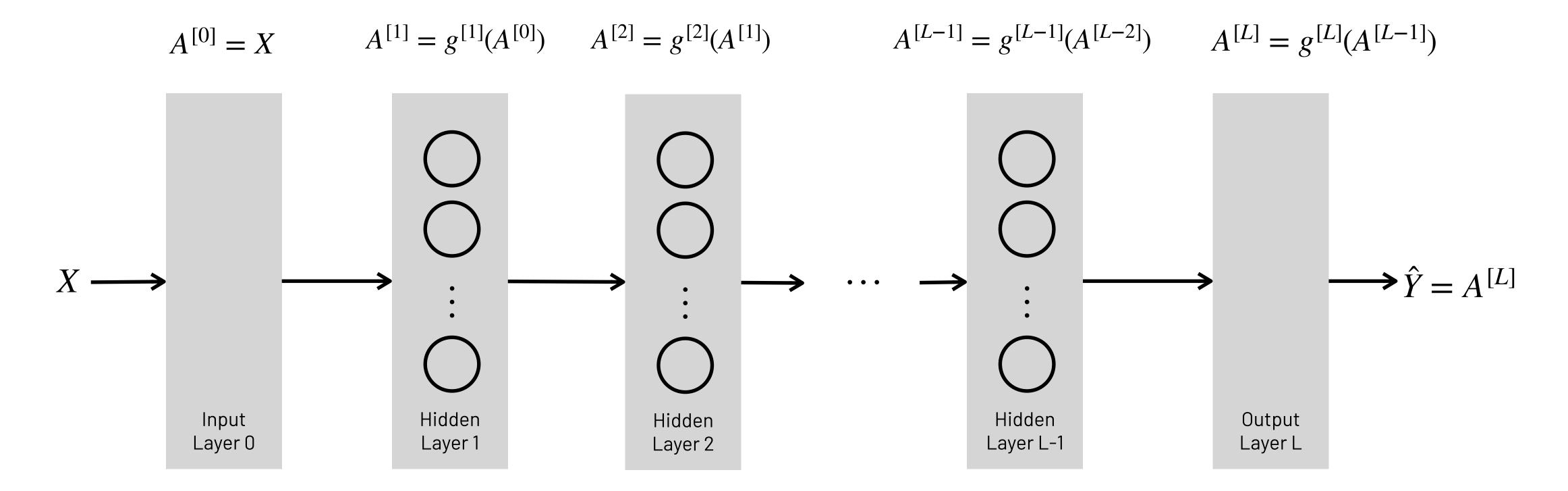
- Backpropagation
 - Computational Graph
 - Demo
 - Logistic Regression
 - Multilayer Perceptron

Lecture Outline

- Dataset Split
- Regression
 - Evalutation Metrics
- Classification
 - Confusion Matrix
 - Evalutation Metrics
 - Accuracy, Precision, Recall, F1-Score

Fully-Connected Neural Networks

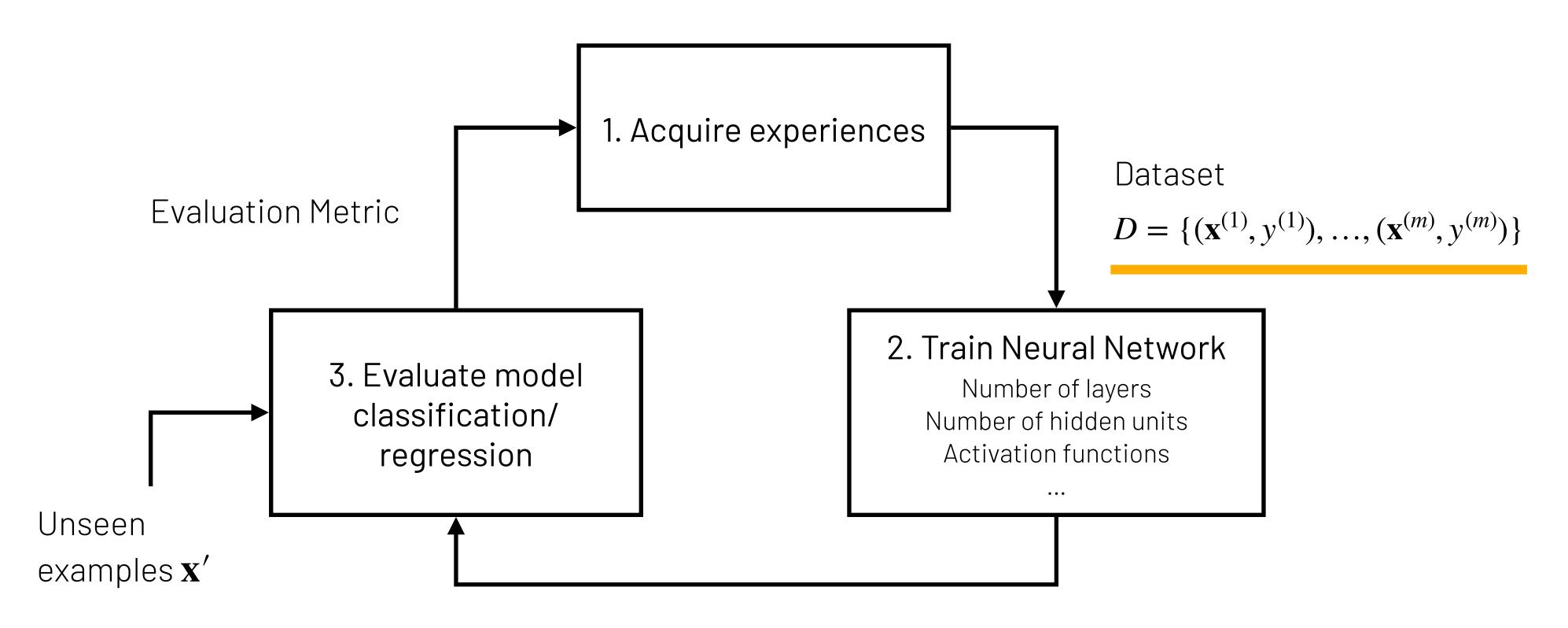
Multilayer Perceptrons are more generally called Fully-Connected Neural Networks, since they can be adjusted to support different: (a) n^0 of layers L, (b) n^0 of hidden units, and (c) activation functions g



How de we choose these hyperparameters (a), (b) and (c)?

Supervised Deep Learning

Train a neural network $h(\mathbf{x}) = \hat{y}$ from a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(m)}, y^{(m)})\}$ to predict the labels $y^{(i)}$ from the feature vectors $\mathbf{x}^{(i)}$, minimizing prediction error on unseen examples \mathbf{x}'



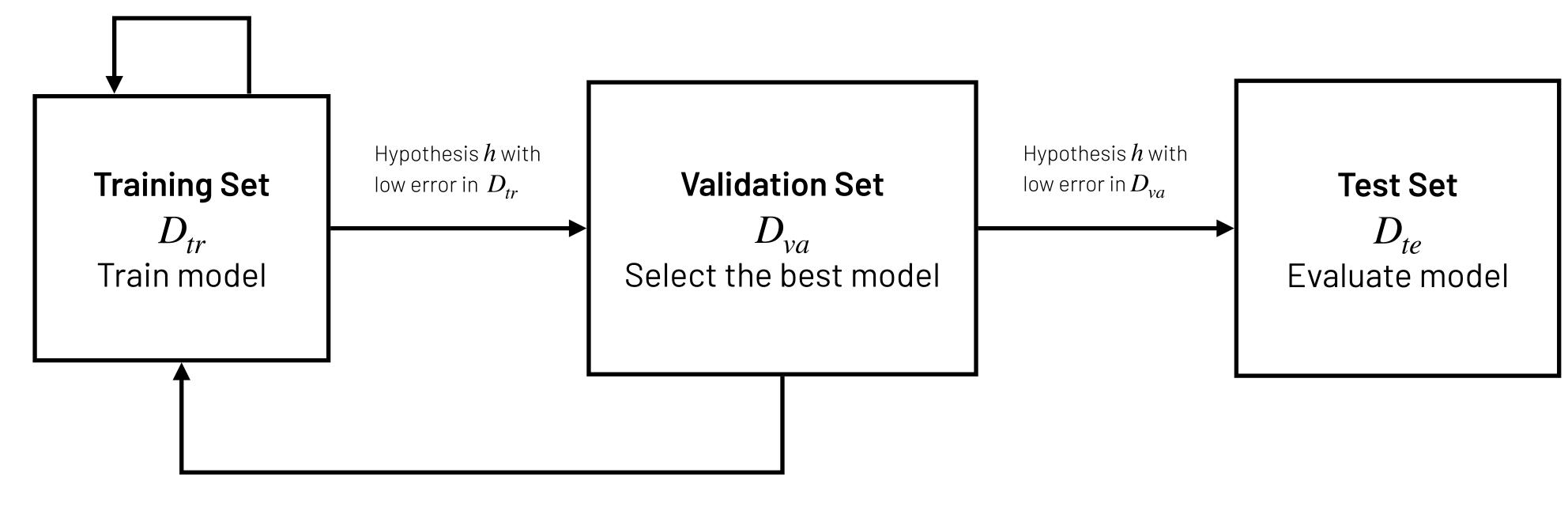
Learned function $h(\mathbf{x}) = \hat{y}$

Evaluating Model's Performance

To evaluate a model on unseen examples, we typically divide the dataset $m{D}$ in 3 disjoint subsets:

$$D_{tr}, D_{va} \in D_{te}$$

Hypothesis h with high error in D_{tr} — Underfit!



Hypothesis h with high error in D_{va} \longrightarrow **Overfit!**

Proportion of Dataset Splits

Dataset:	Training	Validation	Test	
	Traditional Machine Learning	Modern Deep Learning		
Low data regime: 1K examples		Big data regime: 1M examples		
	▶ Train/Test: 70/30%	Train/Test: 95/5	%	
	Train/Valid/Test: 60/20/20%	Train/Valid/Test	: 98/1/1%	

- ▶ It's common practice to **not have a validation set**, especially in low data regimes.
 - In this case your test set is your validation set!
- ▶ The subsets are disjoint!
 - ▶ Their can't be examples in the training set in the validation or test set!

How to Split the Dataset

- ▶ You have to be very careful when you split the data in **Train**, **Validation**, **Test**.
- ▶ The test set must simulate a real test scenario, i.e. you want to simulate the setting that you will encounter in real life.
- ▶ Common techniques to split the dataset:
 - ▶ Uniformely at random, if the data is i.i.d Example: image classification

▶ **By time**, if the data has a temporal component Example: spam filtering



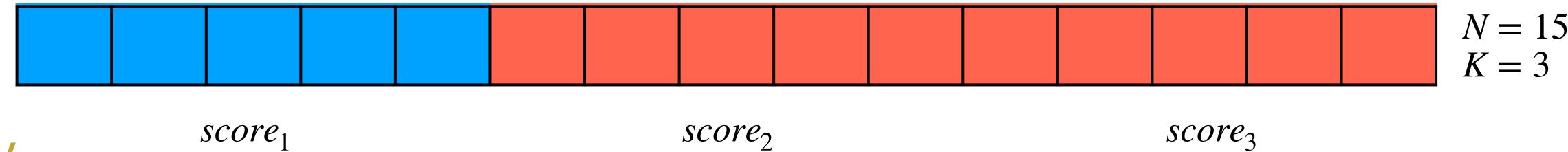
Definitely never split alphabetically, or by feature values.

Cross-validation

When you are in a low data regime, using a single train-test split can lead to highly variable performance estimates. This problem can be solved by cross-validation:

k-fold Cross Validation

- 1. Split the dataset into k equal parts (folds)
- 2. For each fold i from 1 to k:
 - Use fold i as the **test set**
 - Use the remaining k-1 folds as the **training set**
 - Train the model and evaluate on the test set
- 3. Average the k evaluation scores (e.g., $score = \frac{score_1 + score_2 + score_3}{3}$)

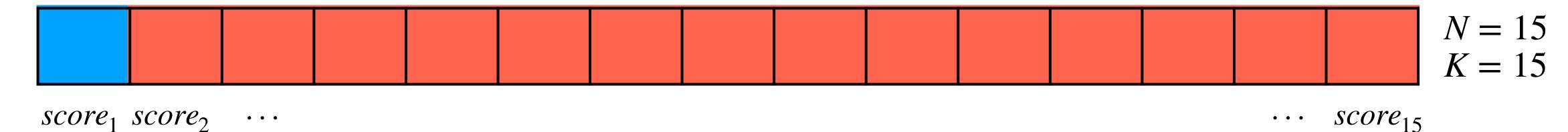


Cross-validation

When you are in a low data regime, using a single train-test split can lead to highly variable performance estimates. This problem can be solved by cross-validation:

Leave-One-Out Cross Validation

- 1. Split the dataset into k = N equal parts (folds)
- 2. For each fold i from 1 to N:
 - Use fold i as the test set
 - Use the remaining N-1 folds as the **training set**
 - Train the model and evaluate on the test set
- 3. Average the N evaluation scores (e.g., $score = \frac{score_1 + score_2 + \ldots + score_{15}}{15}$)



Examples of Datasets Splits

Here is the splits of popular deep learning datasets:

ImageNet (images)

- ▶ 1.4 million images of 1000 classes
- Train/Valid/Test: 90/3/7%

Penn Treebank (sentences)

- ▶ 46K sentences from Wall Street Journal
- ► Train/Valid/Test: 85/7.5/7.5%

MAESTRO Dataset (audio/MIDI)

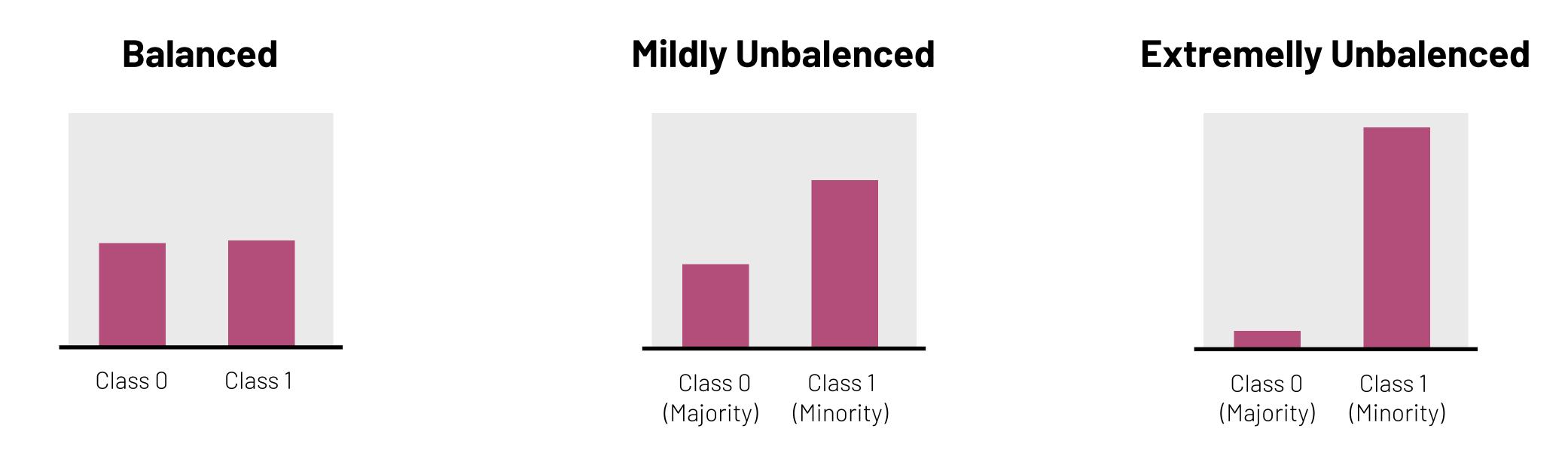
- ▶ 1276 classical music pieces
- Train/Valid/Test: 75/10/15%

MNIST (images)

- ▶ 70K images of handwritten digits (10 classes)
- ▶ Train/Test: 85/15%

Imbalanced Datasets

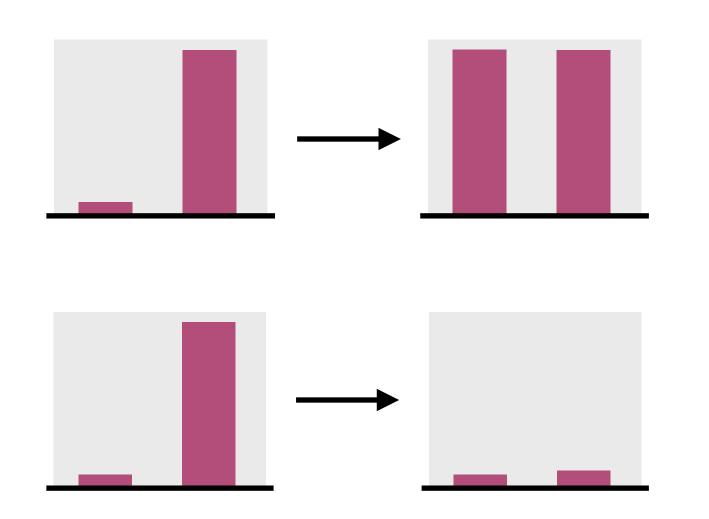
Ideally, when training classification models, your distribution of classes should be balanced:



With (especially extremelly) unbalanced datasets:

- > Splitting the data randomly can produce splits with different distribution of classes
- Your model migh overfitt to the majority class!

Balancing Datasets



$$L(h) = -\frac{1}{m} \sum_{i=1}^{m} \left[w_1 y_i \log(\hat{y}^{(i)}) + w_0 (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

Oversampling — Increase the nº of minority class samples.

▶ Duplicate existing samples or generating synthetic samples

Downsample – Decrease the n^{o} of majority class samples.

▶ Randomly select majority class examples to remove

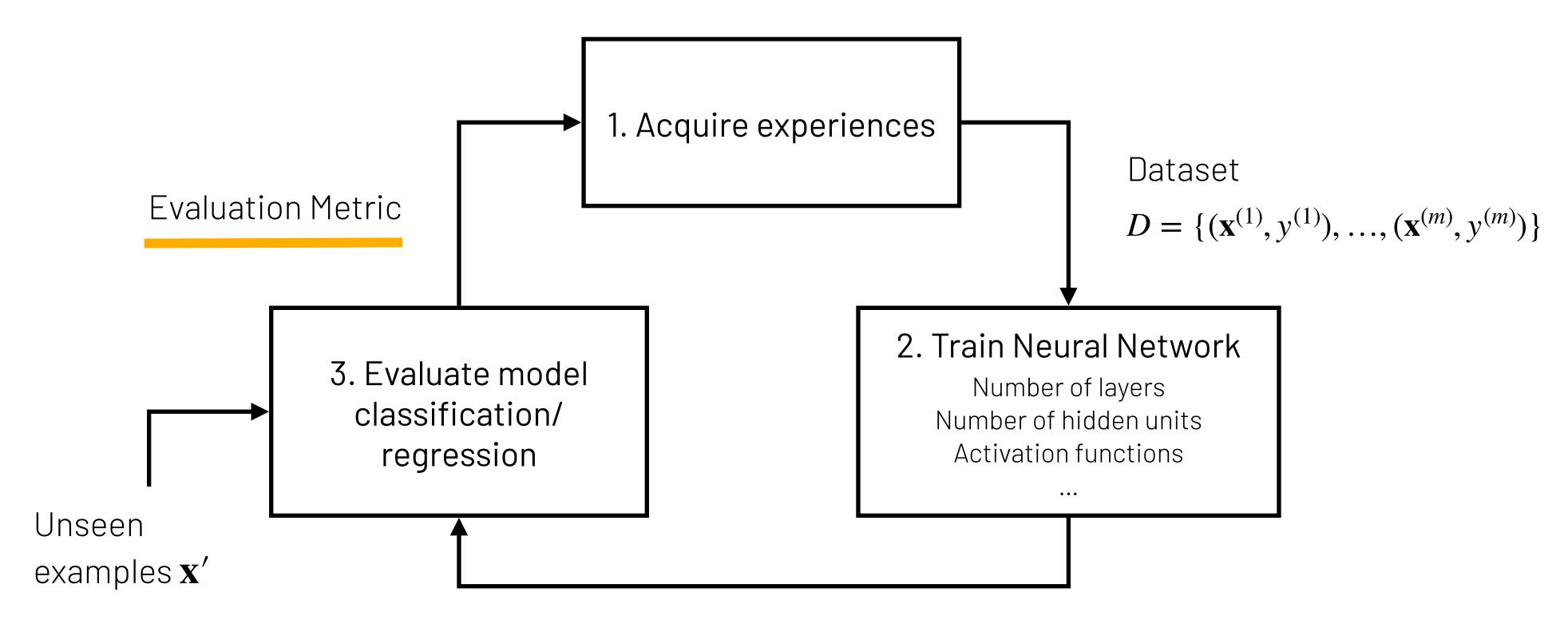
Weights – Assign weights to classes in the loss function.

We want
$$w_0 n_0 = w_1 n_1 = \frac{n_0 + n_1}{2}$$

- w_1 weight for the positive class $w_1 = \frac{n_0 + n_1}{2n_1}$
- w_0 weight for the negative class $w_0 = \frac{n_0 + n_1}{2n_0}$

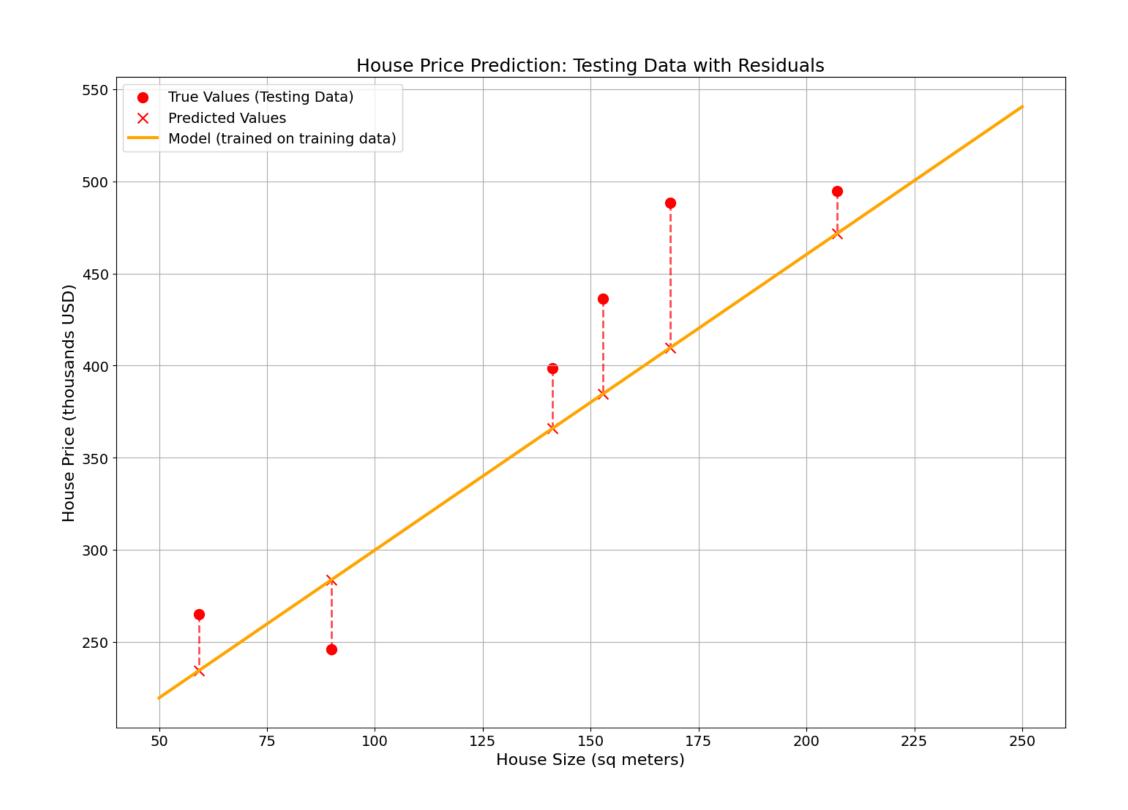
Supervised Deep Learning

Train a neural network $h(\mathbf{x}) = \hat{y}$ from a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(m)}, y^{(m)})\}$ to predict the labels $y^{(i)}$ from the feature vectors $\mathbf{x}^{(i)}$, minimizing prediction error on unseen examples \mathbf{x}'



Regression Evaluation Metrics

Most metrics to evaluate the performance of regression models are based on the residuals $y - \hat{y}$, i.e., a difference between the true value y and the predicted value \hat{y} .



- ightharpoonup Residual: $y \hat{y}$
- ▶ Popular evaluation metrics for regression models:

Mean Squared Error:
$$MSE = \frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Mean Absolute Error:
$$MAE = \frac{1}{m} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

Root Mean Squared Error:
$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}$$

R-squared:
$$R^2 = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{m} (y^{(i)} - \bar{y}^{(i)})^2}$$

Mean Squared and Absolute Errors

Mean Squared Error:
$$MSE(h) = \frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$
 - Average of squared differences between predicted and actual values

- Sensitive to outliers due to squaring
- Units: Squared units of the target variable
- ▶ Use when: Large errors are particularly undesirable (e.g., predicting stock prices)

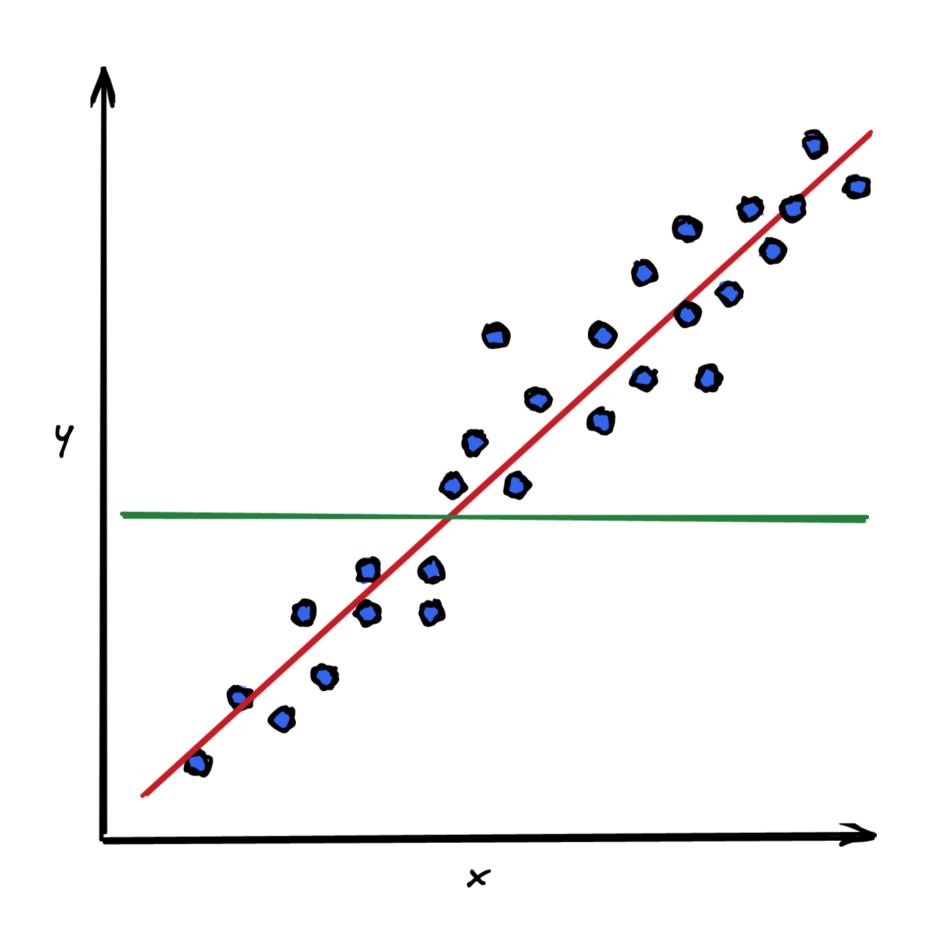
Mean Absolute Error:
$$MAE(h) = \frac{1}{m} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$
 - Average of absolute differences between predicted and actual values

- Less sensitive to outliers than MSE
- Units: Same as the target variable (Easier to interpret than MSE)
- Use when: You want to treat all errors equally (e.g., forecasting daily temperature)

Root Mean Squared Error:
$$RMSE(h) = \sqrt{\frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}$$
 – Square root of MSE

- Sensitive to outliers
- Units: Same as the target variable (Easier to interpret than MSE)
- ▶ Use when: You want a balance between MSE and MAE properties (e.g., estimating house prices)

Coefficient of determination (R2)



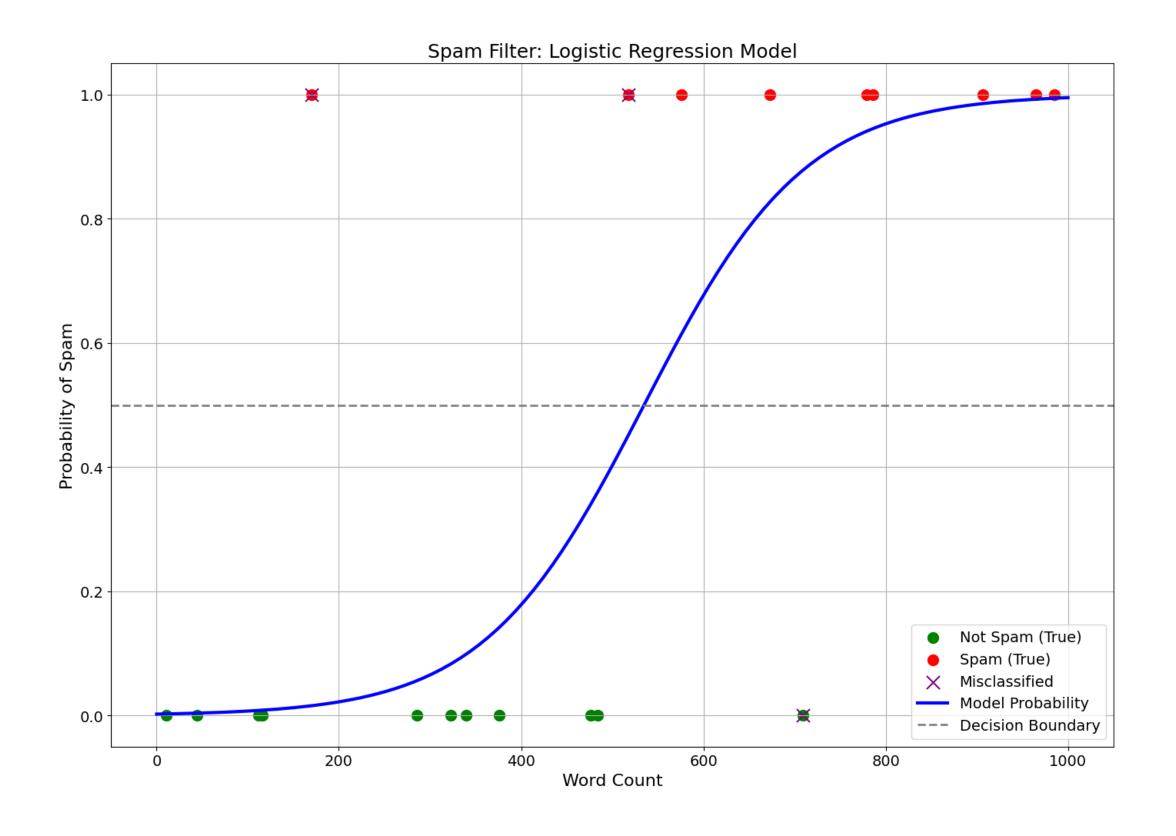
$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{m} (y^{(i)} - \bar{y}^{(i)})^{2}}$$

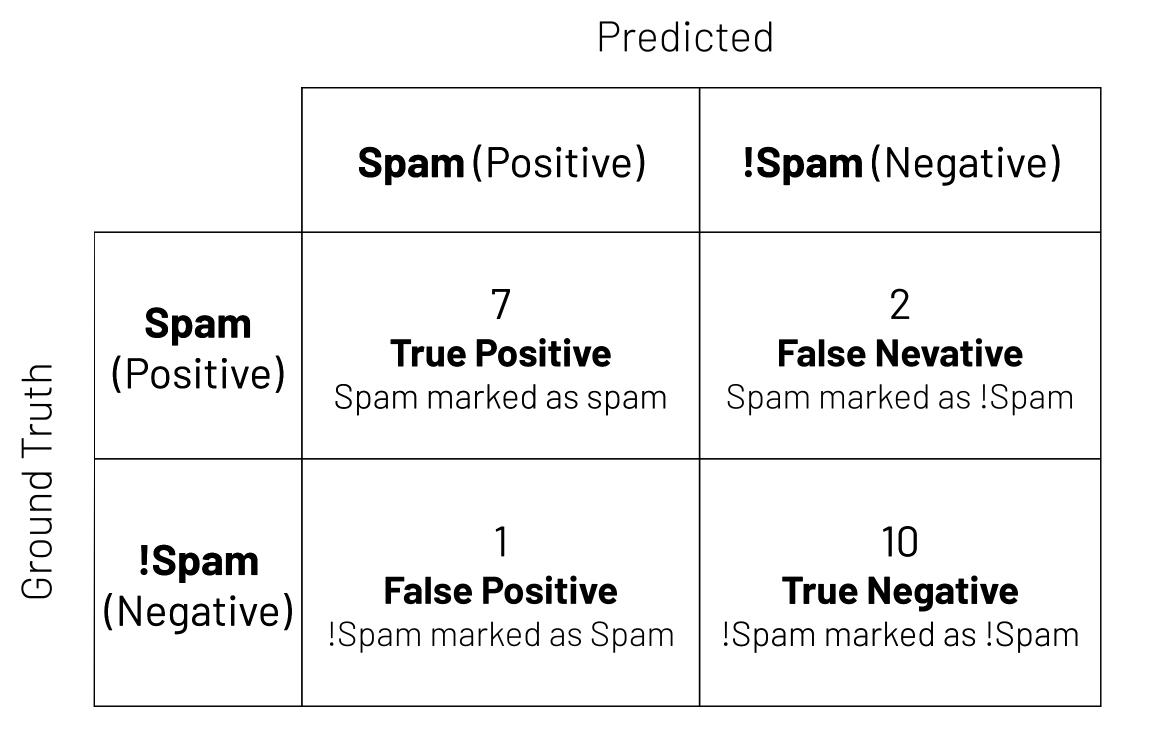
Measures the proportion of variance that is explained by the model. In other words, it compares the fit of a model (red line) to that of a simple mean model (green line).

- ▶ Values range from 0 to 1
- lacktriangle The higher the R^2 , the better the model
- Scale-independent, allowing comparisons across different datasets

Classification Evaluation Metrics

Most metrics to evaluate the performance of classification models are based on the **confusion matrix**, which shows the number of true and false negatives and positives:





Confusion Matrix

Predicted

Classification Evaluation Metrics

Based on the confusion matrix, we can compute the following performance metrics:

Ground Truth

	Spam	!Spam
Spam	7	2
Opam	TP	FN
ISnam	1	10
!Spam	FP	TN

Metric	Formula	Computation	Result	Description
Accuracy	(TP + TN)/Total	(7 + 10) / 20	0.85 (85%)	Proportion of all emails correctly classified (both spam and non-spam)
Precision	TP/(TP+FP)	7 / (7 + 1)	0.875 (87.5%)	When the filter marks an email as spam, how often it is correct. Use when FP is high cost
Recall	TP/(TP+FN)	7/(7+2)	0.778 (77.8%)	Proportion of actual spam emails that were correctly identified. Use when FN is high cost
F1 Score	2*(Precision* Recall)/ (Precision + Recall)	2 * (0.875 * 0.778) / (0.875 + 0.778)	0.824 (82.4%)	Harmonic mean of precision and recall, providing a balanced measure

Multiclass Classification Evaluation Metrics

Accuracy, Precision, Recall and F1-scores can also be used in multiclass problems:

Predicted

Ground Truth

	Class 1	Class 2	Class 3
Class 1	50	10	5
Class 2	6	80	4
Class 3	4	6	35

- \blacktriangleright Accuracy: (TP1 + TP2 + TP3) / Total = (50 + 80 + 35) / 200 = 0.825 (82.5%)
- ▶ **Precision**: (P1 + P2 + P3)/3 = (50/60 + 80/96 + 35/44)/3 = 0.845(84.5%)
- ▶ **Recall**: (R1 + R2 + R3) / 3 = (50 + 80 + 35) / 200 = 0.822 (82.2%)
- ▶ **F1-scores**: 2 * (Macro-Precision * Macro-Recall) / (Macro-Precision + Macro-Recall)

Next Lecture

L8: Regularization & Normalization

Techniques to reduce overfitting and improve model's performance

