INF721 2024/2

Deep Learning

L21: Generative Adversarial Network

Logistics

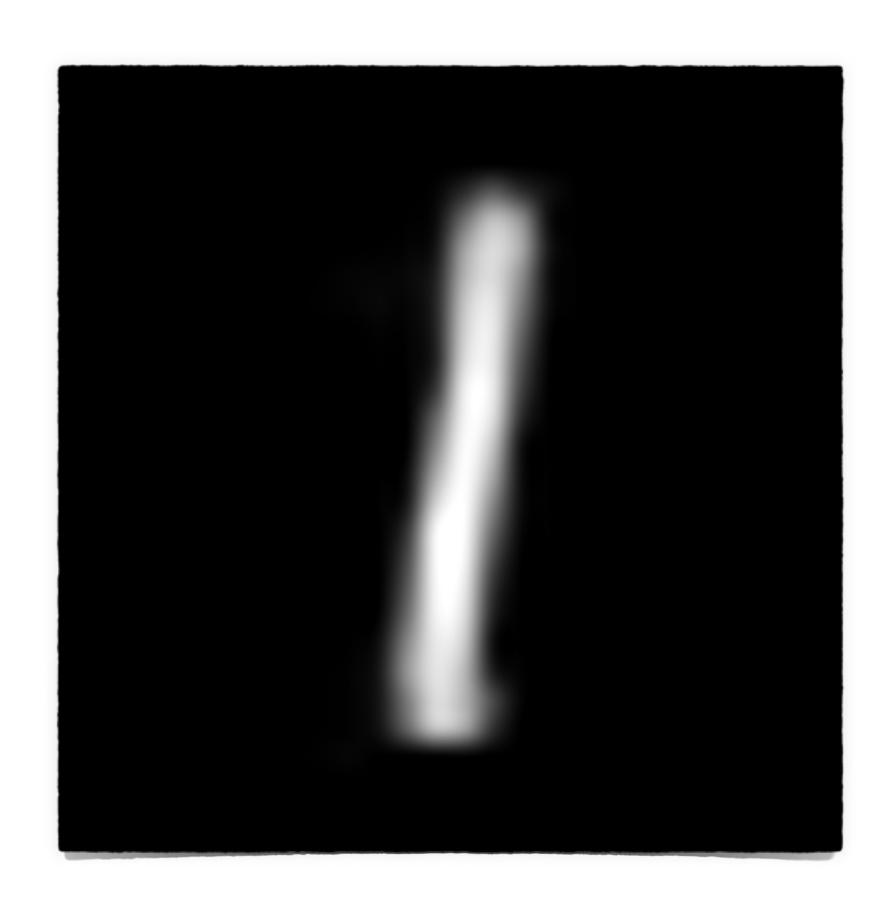
Last Lecture

- Generative Models
- Autoencoders
 - Denoising Aucoders
 - Masked Autoencoders
- Variational Autoencoders
 - KL-Divergence

Lecture Outline

- Generative Adversarial Networks
- Problems with VAEs
- Generator as a CNN
- Discriminator as a CNN
- Adversarial Training
- ▶ GANs over the years
- Results

Problems with Variational Autoencoders

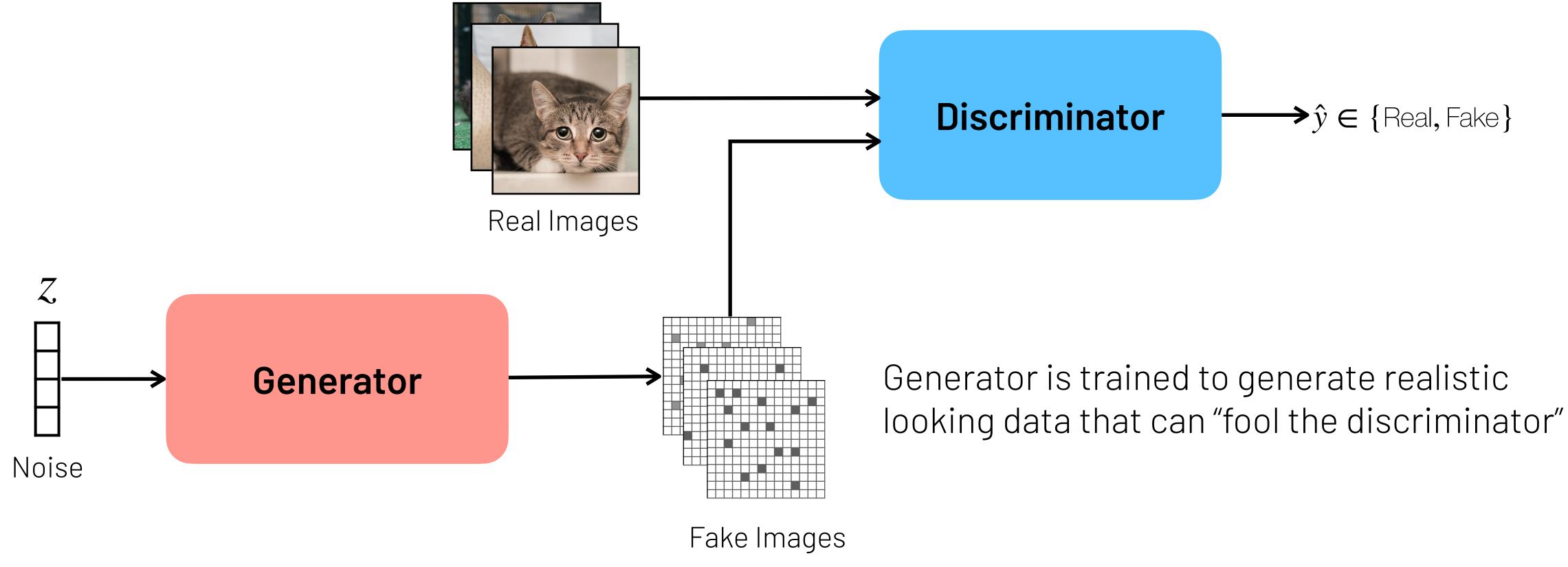


In VAEs, we model an explicit probability distribution $N(\mu, \sigma)$ and evaluate it with MSE + KLD:

- ▶ The MSE + KLD loss tend to produce blurry images
- ▶ We do not explicitly evaluate in our loss "the quality" of the generated samples.
- ▶ What makes an image a good image?

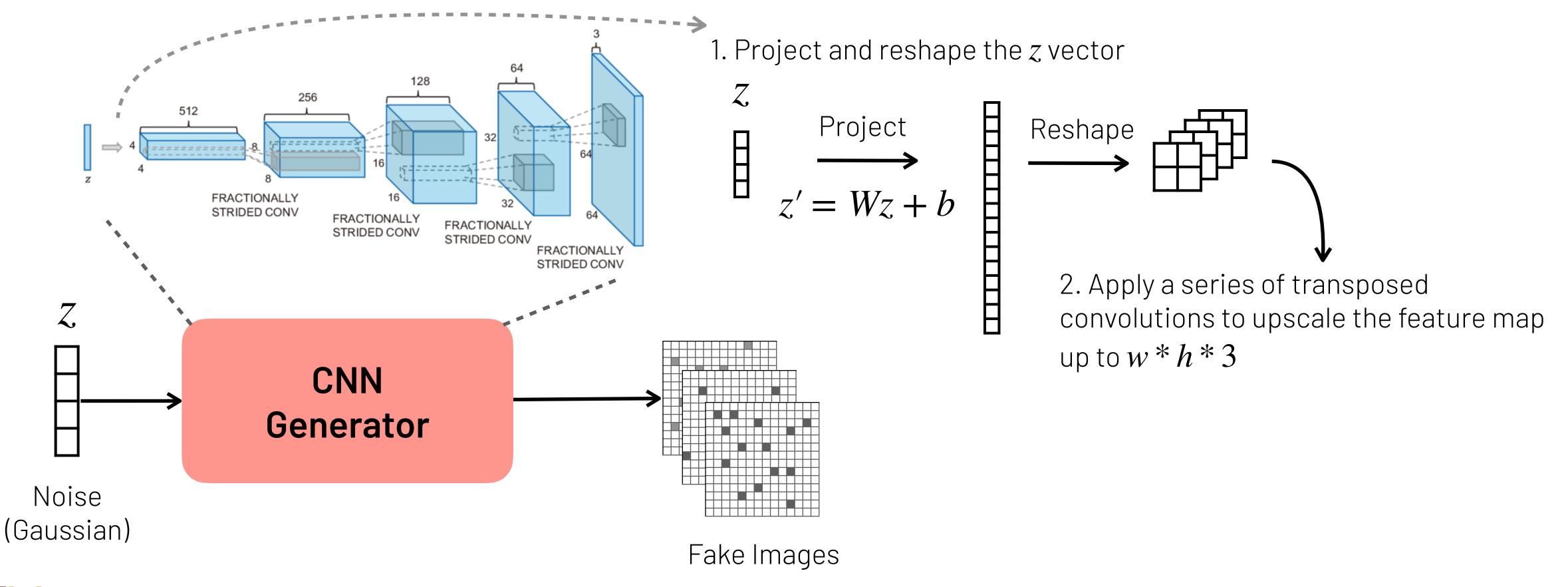
Generative Adversarial Networks (GANs)

GANs use a separated network, called a Discriminator, to evaluate the quality of images produced by the Generator Network:



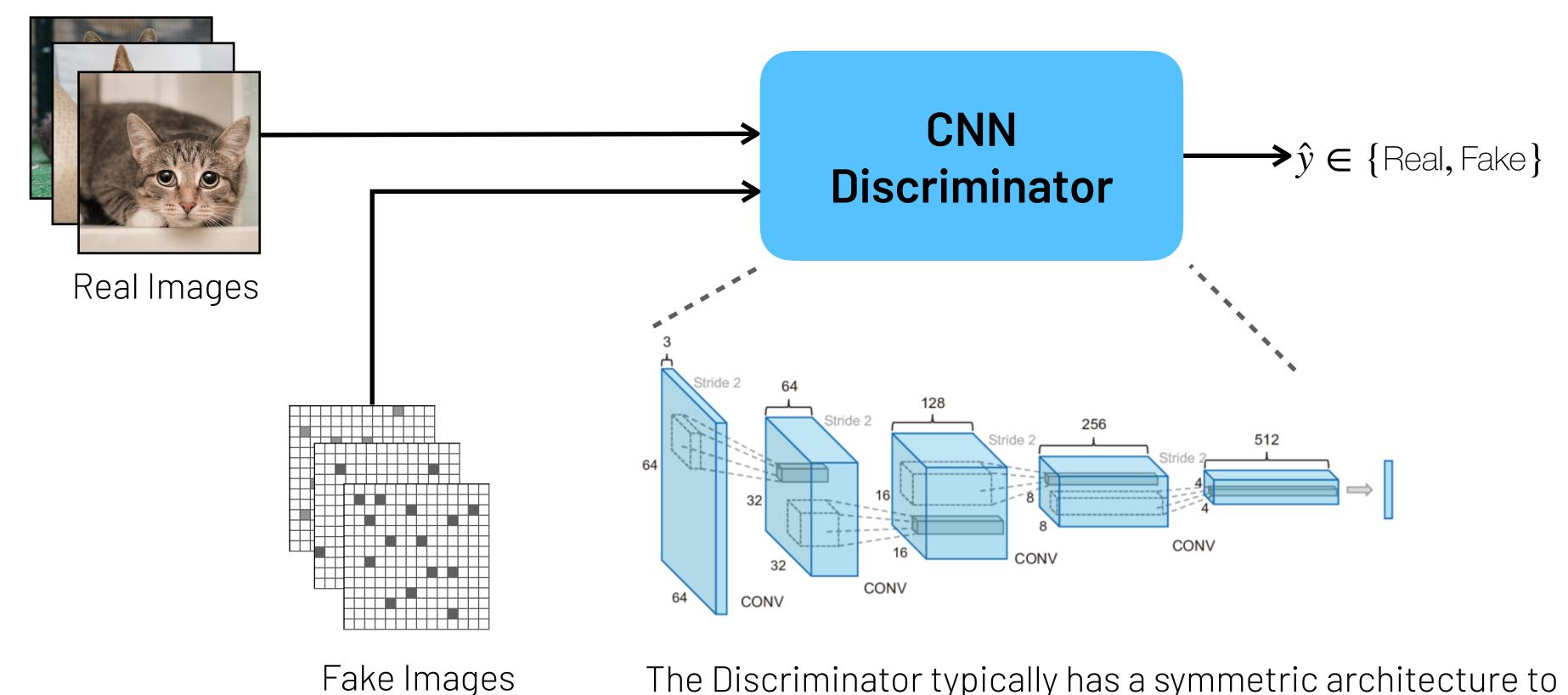
A Typical Generator (DCGAN)

The Generator takes a vector of noise z and outputs an image. This is typically implemented as a Convolutional Neural Network with Transposed Convolutions and ReLUs:



A Typical Discriminator (DCGAN)

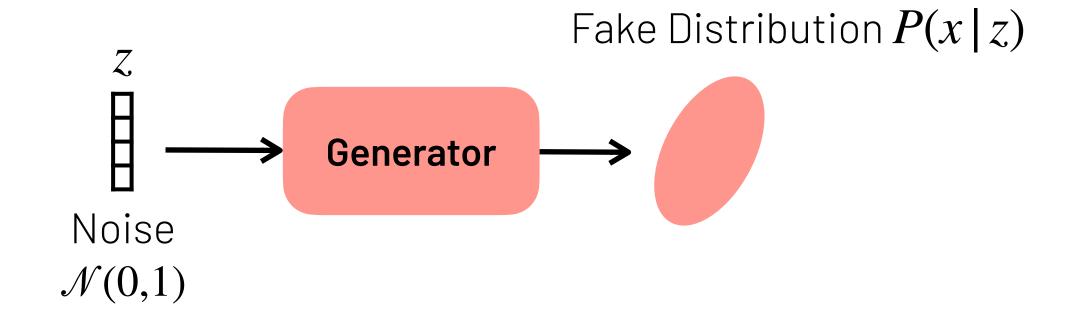
The Discriminator takes as input x af k real images from the dataset and k fake images produced by the generator, and produces an output $\hat{y} \in \{\text{Real, Fake}\}$ (binary classification)



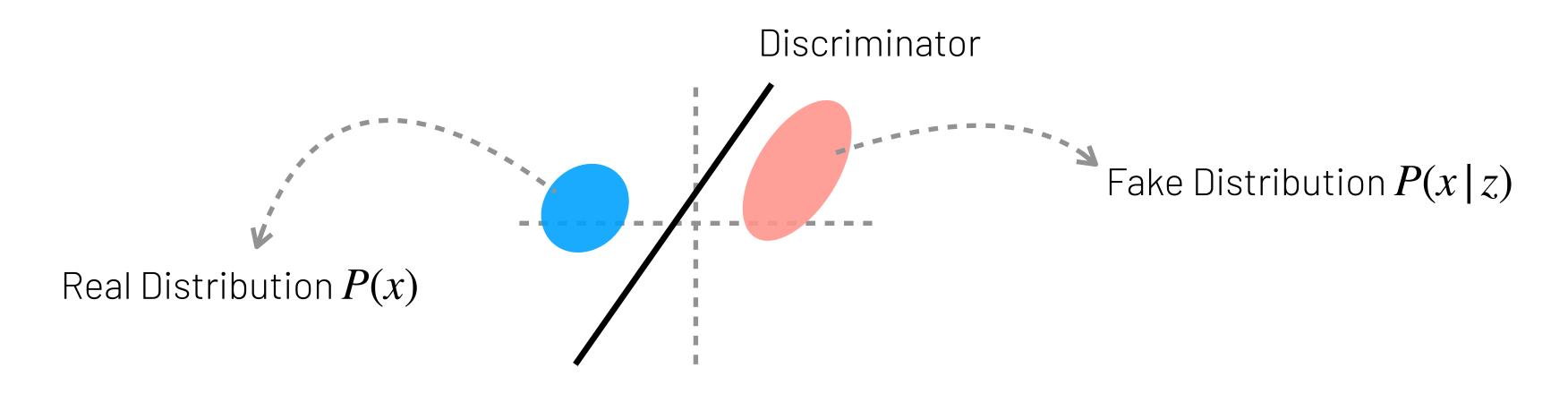
The Discriminator typically has a symmetric architecture to the generator (with LeakyReLUs instead of ReLUs)

Geometric Intuition

The generator is implicitly modeling a conditional distribution $P(x \mid z)$, assuming the existence of latent features z that represent the real data:

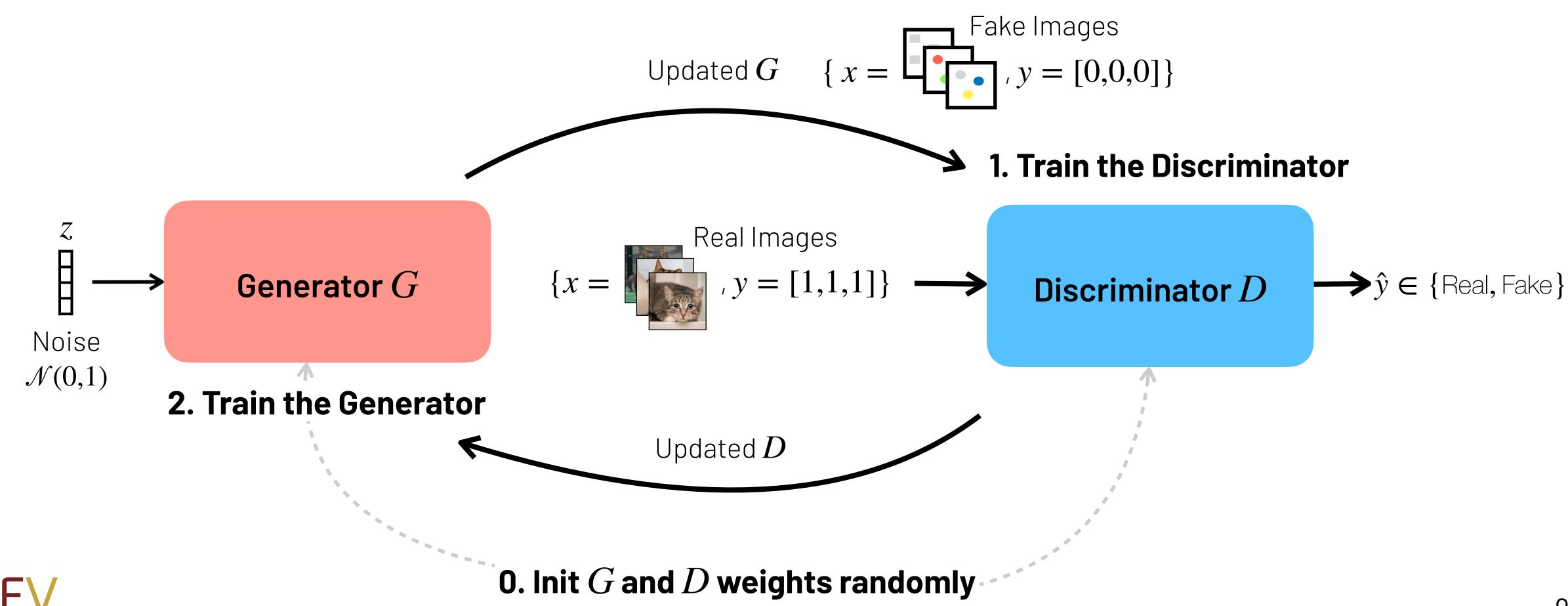


The Discriminator is trying to separate the the fake distribution from the real distribution:



The Adversarial Training

A GAN is trained as a zero-sum game where both networks compete against each other, and the only way for the generator to "win" is by generating realistic data:

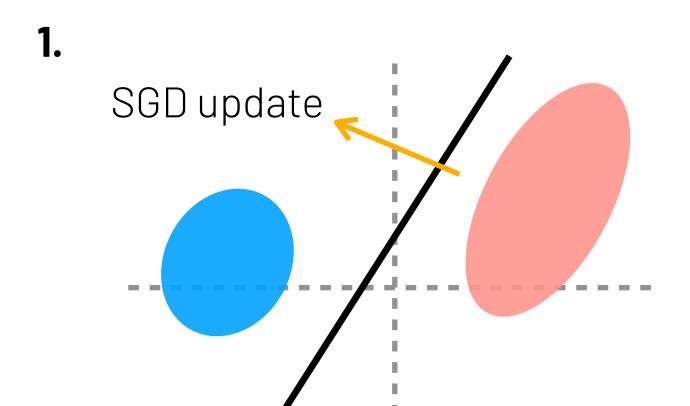


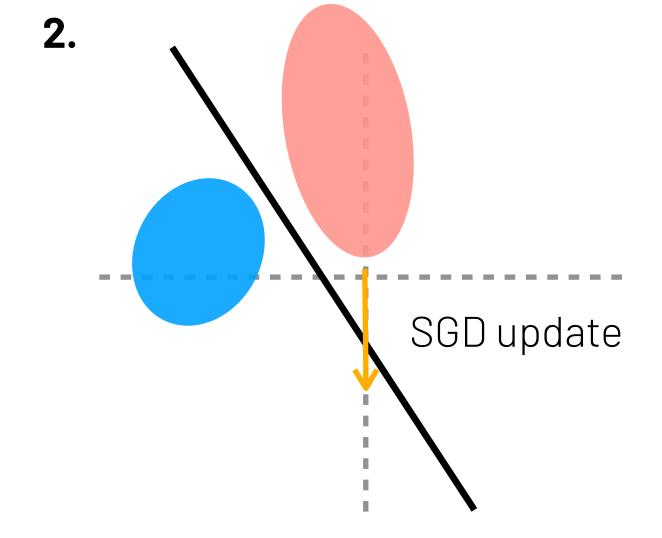
The Adversarial Training

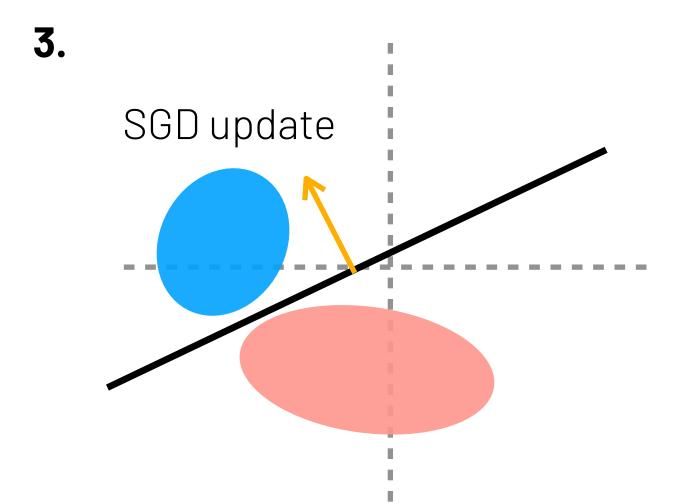
A GAN is trained as a zero-sum game where both networks compete against each other, and the only way for the generator to "win" is by generating realistic data:

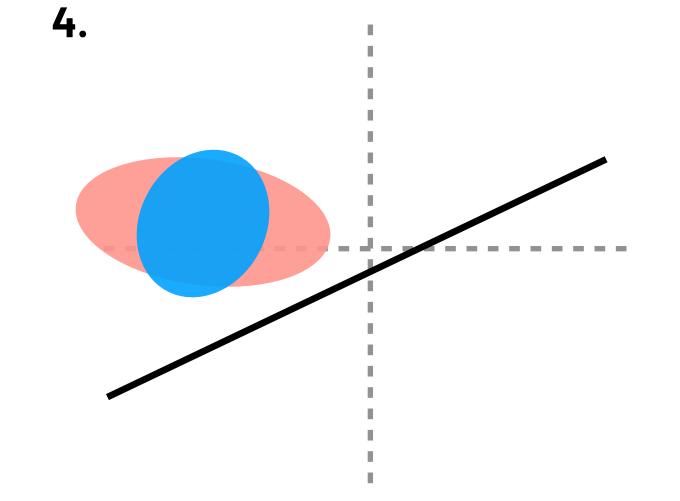
```
1. for each epoch:
     for each mini batch:
3.
       for i from 1 to k: # Train Discriminator k times
4.
           Take m real examples from the training dataset
5.
           Generate m fake examples using the generator
           Update ONLY D weights by maximizing log(D(x)) + log(1 - D(G(z)))
6.
7.
       Generate m new fake examples
8.
       Update ONLY the G weights by maximing log(D(G(z)))
```


Geometric Intuition: Training

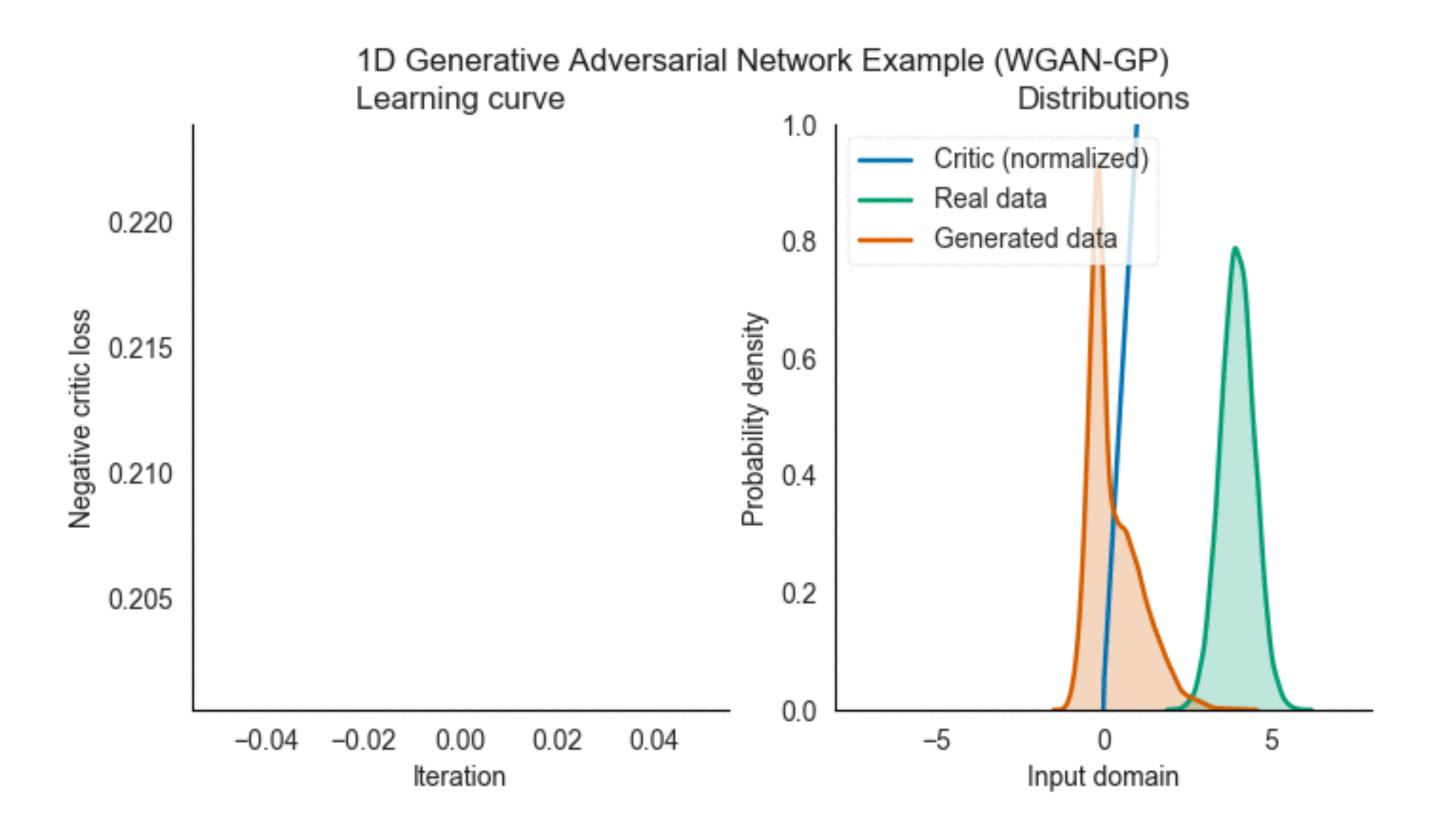




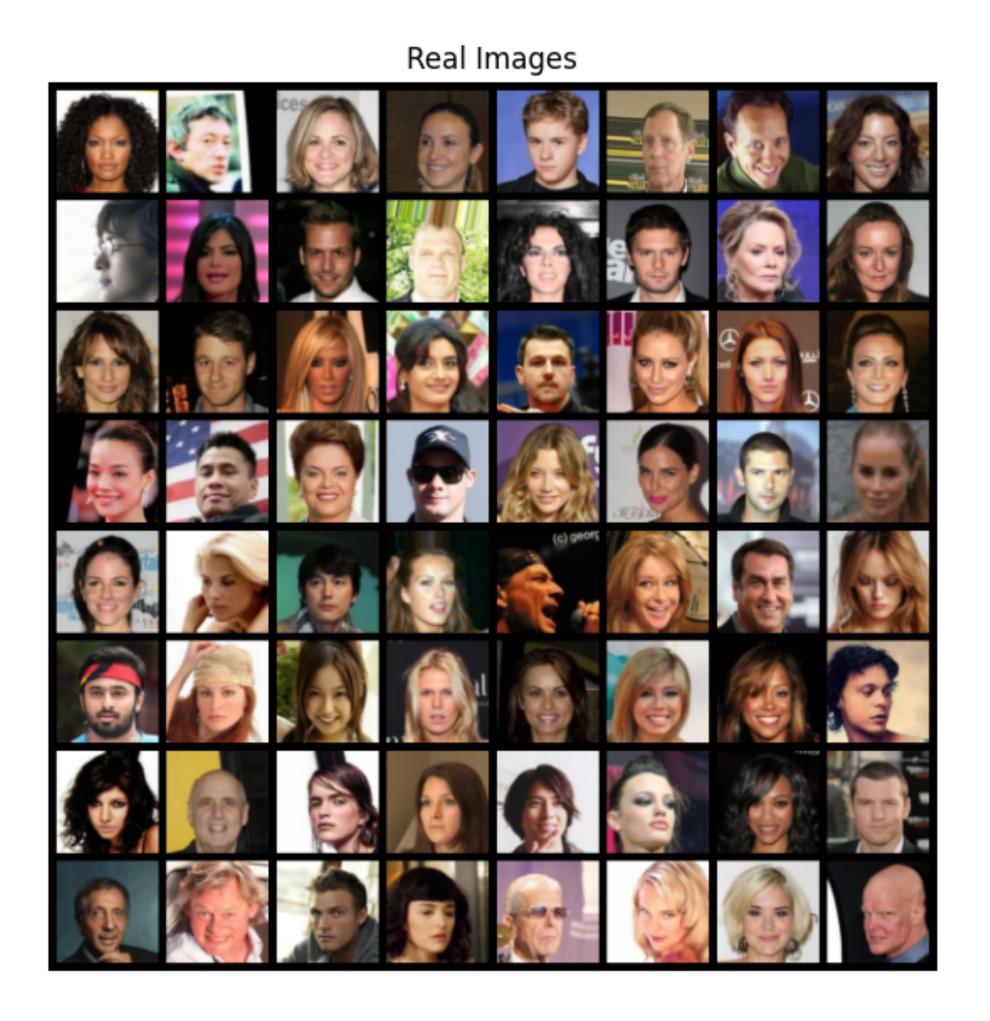


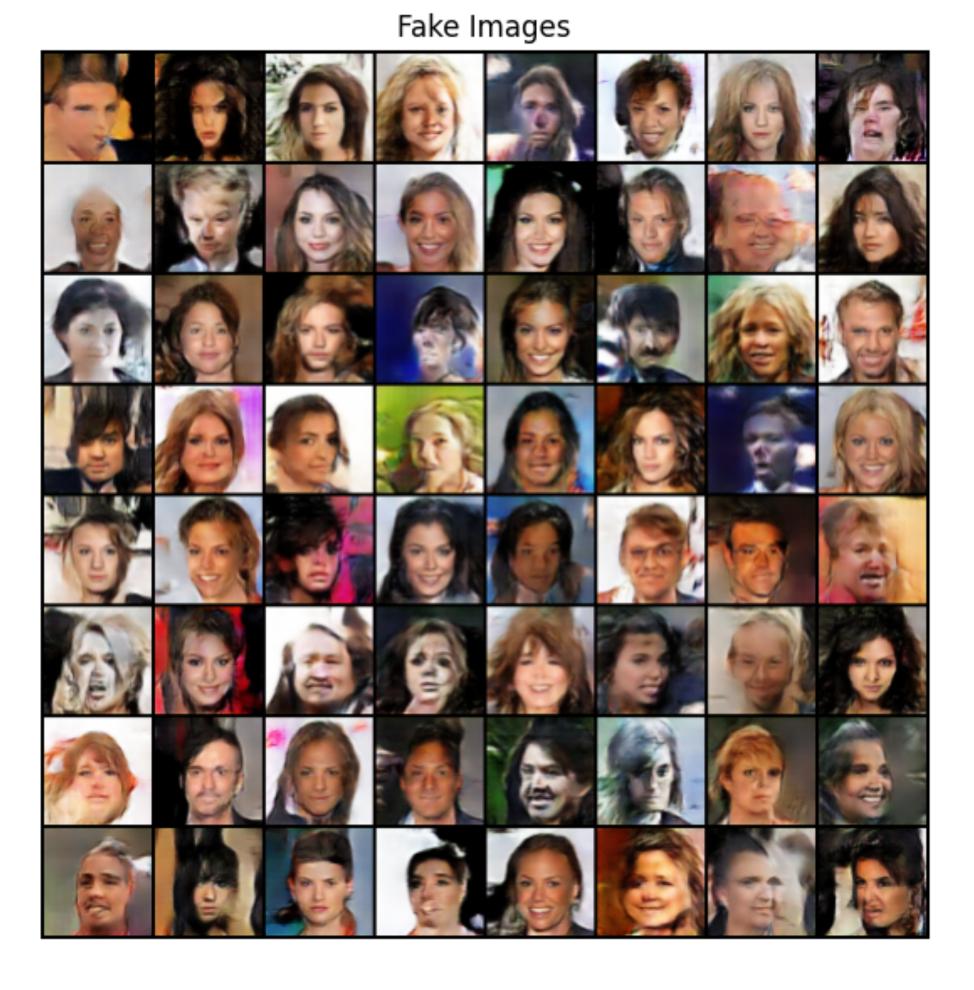


Geometric Intuition: Training



Results: DCGAN (2015)

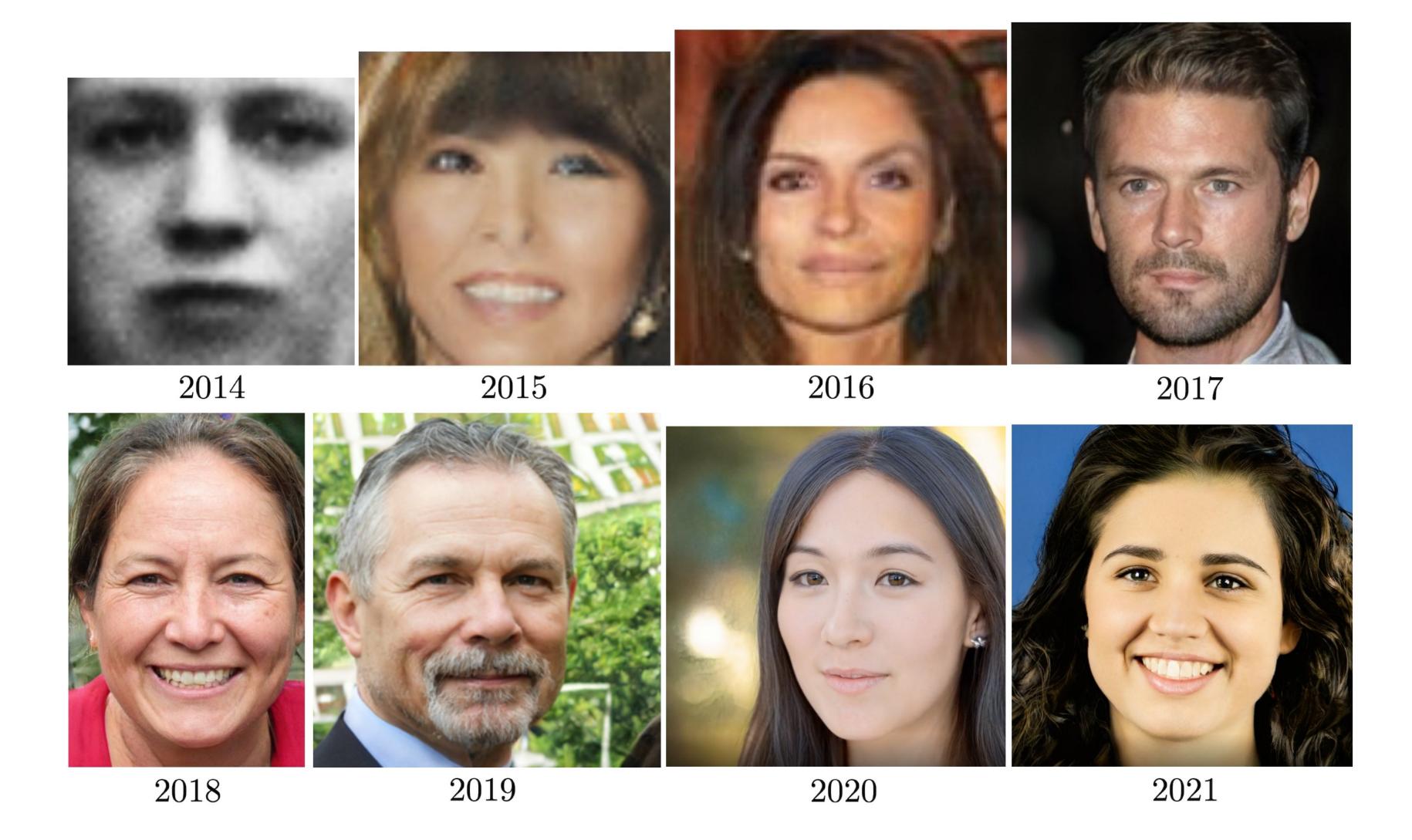




The Evolution of GANs

Year	Model	Key Inovations
2014	GAN	Original adversarial framework
2015	DCGAN	Stable CNN architecture
2016	Conditional GAN	Controlled generation
2017	WGAN	Improved training stability
2017	Progressive GAN	High resolution images
2018	StyleGAN	Style-based generation
2019	BigGAN	Large scale training
2020	StyleGAN2	Image quality improvements
2021	StyleGAN3	Motion coherence

Results over the years



Next Lecture

Project Presentations!

